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A junction coverage compatibility score to quantify the
reliability of transcript abundance estimates and
annotation catalogs
Charlotte Soneson1,2 , Michael I Love3,4 , Rob Patro5, Shobbir Hussain6 , Dheeraj Malhotra7 , Mark D Robinson1,2

Most methods for statistical analysis of RNA-seq data take a
matrix of abundance estimates for some type of genomic features
as their input, and consequently the quality of any obtained
results is directly dependent on the quality of these abundances.
Here, we present the junction coverage compatibility score, which
provides a way to evaluate the reliability of transcript-level
abundance estimates and the accuracy of transcript annota-
tion catalogs. It works by comparing the observed number of
reads spanning each annotated splice junction in a genomic
region to the predicted number of junction-spanning reads,
inferred from the estimated transcript abundances and the ge-
nomic coordinates of the corresponding annotated transcripts.
We show that although most genes show good agreement be-
tween the observed and predicted junction coverages, there is a
small set of genes that do not. Genes with poor agreement are
found regardless of the method used to estimate transcript
abundances, and the corresponding transcript abundances
should be treated with care in any downstream analyses.
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Introduction

High-throughput sequencing of the transcriptome (RNA-seq) is
used for a broad range of applications in biology and medicine.
Most of these involve comparing expression levels of genetic
features (e.g., genes, transcripts, or exons) between samples, and
the quality of the results from any such study will therefore be
directly dependent on the correctness of the expression estimates
for the particular features of interest. The ability to obtain accurate
estimates, in turn, depends on the quality and quantity of the
available data and the completeness and correctness of the used
reference annotation. In general, reliable abundance estimation is

easier to achieve for genes than for individual transcripts or iso-
forms because of high sequence similarity among groups of iso-
forms and the nonuniform read coverage resulting from library
preparation and sequencing biases (Kanitz et al, 2015; Soneson et al,
2015). However, gene-level abundance estimation is not without
challenges, particularly for groups of genes that share a large
fraction of their sequence, which leads to high numbers of multi-
mapping reads (Paşaniuc et al, 2011; Robert & Watson, 2015;
McDermaid et al, 2018 Preprint). Various solutions have been
proposed, including grouping together similar genes (Robert &
Watson, 2015), probabilistic assignment of reads to genes
(Paşaniuc et al, 2011), and scoring the genes based on their se-
quence similarity and number of multi-mapping reads shared with
other genes (McDermaid et al, 2018 Preprint).

Despite their higher reliability, gene-level abundances are in-
sufficient for analyses aimed at detecting differences in transcript-
level expression or relative isoform usage. Even for studies where
the main aim is to detect differential expression at the gene level,
incorporating transcript abundances can in some cases improve
the inference (Wang et al, 2010; Trapnell et al, 2013; Soneson et al,
2015). As methods for transcript abundance estimation are im-
proving, both in accuracy and speed, it has become increasingly
common to estimate abundances of individual isoforms rather than
of the gene as a whole, and today a plethora of transcript abun-
dance estimation methods based on various underlying algorithms
are available (e.g., Trapnell et al, 2010; Li & Dewey, 2011; Glaus et al,
2012; Roberts & Pachter, 2013; Patro et al, 2014; Lee et al, 2015; Pertea
et al, 2015; Bray et al, 2016; Liu & Dickerson, 2017; Patro et al, 2017).
Most evaluations of the ability of these methods to accurately
estimate transcript abundances have been performed using sim-
ulated data, where reads are generated from a known tran-
scriptome (Kanitz et al, 2015; Soneson et al, 2015), or using artificial
spike-in sequences (Leshkowitz et al, 2016). Evaluations have also
been performed based on the agreement of abundance estimates
between replicates (Teng et al, 2016) or agreement with abundances
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or abundance ratios derived from other types of data such as exon
arrays (Dapas et al, 2016), RT-PCR (Zhang et al, 2015), or 39 end se-
quencing (Kanitz et al, 2015). Less is known about the reliability of
transcript abundance estimates in real data sets, based on poten-
tially inaccurate or incomplete annotation catalogs, and how to spot
unreliably quantified transcripts in a sample-wise manner based on
the RNA-seq data alone. A motivating example is illustrated in Fig 1A,
showing abundance estimates for the ZADH2 gene in Epstein-Barr
virus (EBV)-transformed lymphocytes, as displayed in the Genotype-
Tissue Expression (GTEx) Portal (https://www.gtexportal.org/home/
gene/ZADH2, accessed July 19, 2018). This gene has four annotated
isoforms, each consisting of two exons and each featuring a unique
splice junction (with a shared acceptor site). The top row illustrates
the estimated expression of collapsed exons and junctions (with
legends to the right), indicating a high expression of themost 59 exon
and the corresponding junction. The alternative exons and junctions

have no or very few supporting reads. However, the isoform abun-
dance estimates (lower panel) suggest a different picture, where two
of the isoforms whose unique exons and junctions are supported by
few reads are assigned the highest expression levels.

In this article, we present the junction coverage compatibility
(JCC) score (Fig 1B), which allows detection of genes with such
conflicting indications of isoform abundance. The score can be
calculated for any genomic region (e.g., a gene locus), by comparing
the observed coverage profile, obtained by aligning the RNA-seq
reads to the genome, with the predicted coverage profile derived
from estimates of transcript abundances and biases influencing the
observed read coverage of a sequenced transcript. In particular, we
focus on the number of reads spanning annotated splice junctions
in the genomic region of interest. The key assumption behind the
JCC score is that with (i) a complete and accurate catalog of ref-
erence transcripts, (ii) an accurate estimate of the abundance of

Figure 1. Motivation and outline of the JCC score. (A)
Example of a gene with inconsistent signals resulting
from abundance estimation based on exons, junctions,
or entire isoforms. The figure was generated in the GTEx
Portal (https://www.gtexportal.org/home/gene/
ZADH2, accessed July 19, 2018). (B) Outline of the
approach used to calculate the JCC scores. First, reads
are aligned to the genome using STAR, and the number
of reads observed to span each annotated splice
junction is extracted. The aligned reads are also used
to fit a fragment bias model using the alpine
Bioconductor package, which is then used to predict
coverage profiles for all annotated transcripts. The
coverage profiles are combined with transcript
abundance estimates to obtain the predicted numbers
of junction-spanning reads, which are compared with
the observed numbers to calculate the JCC score for
each gene. (C) Schematic illustrating the generation of
artificial transcripts in the simulated data. In total,
artificial transcripts are generated for 4,514 genes,
which have multiple annotated 39UTR of different
length (at least 1-kb length difference) starting in the
same genomic position. For each such gene, two
transcripts are selected; one that is annotated with the
short 39UTR and one that is annotated with the long
one. The artificial transcript is created by combining
the internal structure (all exonic regions except the
annotated 39UTR) of one of the two isoforms with
the 39UTR of the other. In the simulation, all reads from
the modified genes are generated from the artificial
transcripts.
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each individual transcript, and (iii) knowledge about the biases
affecting the probability of a given fragment of a given transcript to
be sequenced, the coverage profile prediction obtained by com-
bining these three sources of information for any genomic locus
should be close to the observed one. Thus, large deviations be-
tween the observed and predicted coverage profiles indicate that
the transcript estimates in the region are unreliable, and such
regions should be flagged and interpreted with caution in down-
stream analyses. There can be many reasons behind a region
obtaining a high (bad) JCC score, ranging from poor performance of
the estimation method, for example, due to sequence similarity
with other parts of the transcriptome or low read coverage of
regions critical for distinguishing transcripts, to an incorrect or
incomplete annotation catalog, making a correct distribution of the
reads between the annotated transcripts in the region impossible.

Using eight transcript abundance estimation methods and two
deeply sequenced human RNA-seq data sets (denoted as Cortex and
HAP1, see the Materials and Methods section), we show that for most
human genes, the junction coverages predicted from the transcript
abundances are highly concordant with the observed junction
coverages, suggesting overall accurate annotation and transcript
abundance estimates. However, a small fraction of the annotated
genes show a substantial difference between the predicted and
observed junction coverages. For some of these genes, the reason for
the incompatibility appears to be an incompletely annotated tran-
script catalog, and no distribution of the reads among the annotated
isoforms would simultaneously give a satisfactory JCC and a good
agreement with the annotated UTRs. The uneven read coverage of
isoforms also leads to estimation problems, especially for genes with
short, poorly covered exons. Using a simulated data set, we show that
misannotation of 39UTRs can lead to unreliable transcript estimates,
which is interesting in the light of recent reports showing that most
isoform differences between tissues are due to alternative start and
end sites and involve untranslated exons (Pal et al, 2011; Shabalina
et al, 2014; Reyes & Huber, 2018).

Results

Predicted transcript coverage patterns agree well between
samples

The prediction of the transcript coverage profiles by alpine is a
crucial step in the calculation of the JCC score. It is carried out
separately for the HAP1 and Cortex samples, to account for any
sample-specific biases. Of the 200,310 annotated transcripts in the
Ensembl GRCh38.90 gtf file, the prediction of the coverage pattern by
alpine failed for 29,342 (14.6%) in theHAP1 sample and 13,906 (6.9%) in
the Cortex sample, almost exclusively because of transcripts being
shorter than the respective fragment lengths. The prediction
returned NULL for 23,028 (11.5%) transcripts in the HAP1 sample and
11,941 (6.0%) in the Cortex sample that did not have any overlapping
reads. For these transcripts, we impose a uniform coverage, rather
than excluding them from subsequent calculations.

Overall, we observe a high correlation between the predicted
coverage profiles in the two libraries (Fig S1), indicating that they

share many of the biases, despite coming from different cell types
and being prepared and sequenced almost two years apart on
different sequencing machines. The coverage prediction is the
single most time-consuming step of the JCC score calculation, and
the high correlation even between such different libraries suggests
that in a specific study, the prediction may not need to be done
separately for each individual sample, which can reduce the run
time considerably. Run time can also be reduced by limiting the
coverage prediction and subsequent analysis to transcripts from a
subset of the genes that are of particular interest in a given
situation.

Most predicted junction coverages are consistent with the
observed coverages

Using the approach described in the Materials and Methods sec-
tion, we obtain the number of uniquely mapping reads observed to
span each annotated junction and the number predicted to span
each junction given each set of transcript abundance estimates.
Comparing the predicted junction coverages (Cj) with the observed
ones (Rj) across all annotated junctions shows a generally high
correlation for all abundance estimation methods (Fig 2A, left
column), suggesting that in most genomic loci, the annotated
transcript structure is compatible with the observed read align-
ments and that the approach we use to predict junction coverages
based on transcript abundances is valid. Scaling the predicted
junction coverages within each gene, corresponding to setting β = 1
in the subsequent JCC calculation (see the Materials and Methods
section) and thereby focusing more on the relative junction cov-
erages within a gene rather than the overall abundance of the gene,
increases the correlation for all methods (Fig 2A, right column). The
largest discrepancies between observed and predicted junction
coverages are seen for SalmonCDS, indicating that on a global scale,
only considering annotated coding sequences discards relevant
information about transcript abundances. We also note that there
is a set of junctions with a low fraction of uniquely mapping reads
(Fig 2A, marked in red) for which the predicted number of spanning
reads is considerably higher than the observed number of uniquely
mapping junction reads. Because these discrepancies do not
represent a failure of the annotation system or transcript abun-
dance estimation method, but rather an inability to place reads in a
unique genomic position, we downweight the influence of these
junctions on the gene-wise JCC score via the g(ω) function, as
described in the Materials and Methods section. Permuting the
transcript counts within each gene leads to substantially lower
correlations (Fig S2), suggesting that the high correlation is not
driven mainly by the expression level of the genes, but by a correct
distribution of reads among isoforms.

Most genes show high compatibility between observed and
predicted junction coverages

After investigating the concordance between observed and pre-
dicted coverages for individual junctions, we next calculate the JCC
score for each annotated gene. With the exception of SalmonCDS
(which is using a reference annotation in which many transcripts
and genes are missing because they do not have an explicitly
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Figure 2. Comparison of observed and predicted coverage patterns. (A) Correlation between observed and predicted number of reads spanning each junction for
theHAP1 sample. The left column (“Predicted coverage”) shows the actual number of readspredicted by alpine and the respective transcript abundance estimationmethod,whereas the
predicted values in the right column (“Scaled predicted coverage”) are scaled to sum to the same number as the observed number of uniquely mapping junction reads within
each gene. Scaling improves the correlation between observed and predicted junction coverages for all includedmethods. Axes are square root transformed for better visualization. Red
points indicate junctions where less than 75% of the spanning reads are uniquely mapping. (B) Overall distribution of the gene-wise JCC scores for eachmethod in the HAP1 sample, as
well as the association between the JCC score and the total number of reads for the gene and the number of uniquely mapped junction reads in the gene.
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annotated coding sequence), we are able to calculate a valid JCC
score for around 16,500 genes in theHAP1 library and just more than
20,000 genes in the Cortex library (Fig S3). Among the genes for
which the score cannot be calculated, most are not expressed
(predicted total abundance of all isoforms is equal to 0), whereas a
smaller fraction either are expressed but lack junctions, or contain
junctions but have no or too few uniquely mapping junction-
spanning reads to calculate the score.

Investigating the overall distribution of valid JCC scores shows
that for most genes, the score is low (below 0.5), confirming the
previous observation that for most of the genes, the junction
coverage pattern induced by the estimated transcript abundances
agrees well with the observed junction coverages (Fig 2B, left
column). Similar distributions are seen for all included abundance
estimation methods; in particular, genes with high JCC scores are
observed with all abundance estimation approaches. Most of the
very high scores are obtained for genes with low abundance and
few uniquely mapped reads spanning any of the junctions (Fig 2B).
The high score for these genes may be driven largely by shot noise
and may improve with even higher sequencing depth. Moreover,
lowly expressed genes are typically excluded in practical analyses
of RNA-seq data such as differential expression analyses. Thus, to
illustrate the behaviour of the JCC score, in the following analyses,
we focus on genes with at least 25 reads mapping uniquely across
any of its junctions.

JCC scores are overall similar between methods

Because the JCC score is obtained by combining a set of estimated
transcript coverage profiles with transcript abundance estimates,
using different transcript abundance methods for the latter leads
to different sets of scores. We calculate JCC scores using transcript
abundance estimates from eight different methods, and sub-
sequently calculate correlation coefficients between the scores
obtained by each method pair, using only genes with at least 25
uniquely mapping junction-spanning reads (Figs S4, S5, and S6). As
expected, the correlation is overall very high, and the most de-
viating scores are obtained with SalmonCDS, which uses a different
set of reference sequences than the other methods, and StringTie.
On average, both SalmonCDS and StringTie give higher scores than
the remaining methods (Fig S6B).

Examples of genes with high JCC scores

To exemplify the types of deviating patterns resulting in high JCC
scores, we consider some of the genes that are assigned high
scores (JCC ≥ 0.6) with all the transcript abundancemethods (except
SalmonCDS, because it is based on a different set of reference
transcripts and does not represent a typical or recommended
way of performing transcript abundance estimation). The rationale
for focusing on these genes is that we expect genes that are
consistently assigned a high score, regardless of the way the
transcript abundances were estimated, to be more likely to harbor
misannotated transcripts or suboptimal read coverage patterns,
making abundance estimation difficult. For genes where some
abundance estimates provide compatible junction coverage
patterns, high scores for other methods are more likely due to

problems in the abundance estimation step. Furthermore, we limit
the investigation to genes with at least 25 uniquely mapped
junction-spanning reads, at least 75% of the junction-spanning
reads mapping uniquely and an intron/exon read count ratio
below 0.1. These strict filtering criteria are satisfied by 161 genes in
the Cortex library and 58 genes in the HAP1 library. Eighteen of the
genes pass the filters in both libraries. One of these genes is ZADH2
(Fig 3). ZADH2 has four annotated transcripts, each consisting of two
exons and one exon–exon junction, and no junction is shared
between transcripts. Most transcript abundance estimation
methods distribute the estimated abundance between two or three
of these isoforms. However, only one of the four annotated junc-
tions has any observed spanning reads, which suggests that only
the corresponding transcript (ENST00000322342) is indeed present.
This leads to a large discrepancy between the observed and
predicted junction coverages (for all abundance estimation
methods), and hence a large JCC score. For this gene, a possible
explanation for the discrepancy is that the coverage of the 59 end of
the transcripts is weak, but for a reason not captured by the alpine
bias model, implying that the 39 end, which is longer and shows a
higher coverage, will dominate the abundance estimation. Uneven
coverage in this region can, therefore, bias the abundance esti-
mation towards one or the other transcript. As illustrated in Fig 1A, a
similar behaviour can be seen also in the GTEx data (accessed via
the GTEx Portal).

Investigation of the 18 genes that received high scores with all
quantification methods in both samples suggests that they can be
broadly divided into three groups. The first group consists of genes
similar to ZADH2, where a low or uneven coverage of the 39 and/or
59 end of transcripts leads to a read assignment that is in-
compatible with the observed junction coverage pattern (for other
examples, Figs S7, S8, S9, and S10). The second group of genes
obtaining high JCC scores across methods and data sets are those
where the annotation catalog appears to be incomplete, or where
the annotated 39UTRs are seemingly too short (examples in Figs S11
and S12). Finally, the third group consists of a small set of genes
where the reason for the high score is unclear from visual in-
spection because of complicated transcript configurations and
uneven coverage patterns (Figs S13 and S14). Taken together, these
observations support the hypothesis that high JCC scores that
persist across several different abundance estimation approaches
and multiple data sets are more likely to be caused by tran-
scriptome misannotation rather than imperfections in the abun-
dance estimation procedure itself. Regardless of the cause,
however, the resulting abundances are unreliable and should be
interpreted with caution in downstream analyses. We also note that
because the JCC score depends not only on the annotation catalog
but also on the estimated abundances, even incorrectly annotated
genes will only be assigned a high JCC score for samples where
unannotated transcripts are indeed expressed.

JCC scores are not strongly associated with inferential variability

Several isoform abundance estimation methods allow assessment
of the variability of the resulting expression levels via some form of
(re)sampling (Li & Dewey 2011; Glaus et al, 2012; Turro et al, 2014;
Bray et al, 2016; Mandric et al, 2017; Patro et al, 2017). To compare the
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uncertainties picked up by the JCC score with those represented in
these inferential variances, we perform 100 bootstrap runs using
Salmon and estimate the coefficient of variation of the boot-
strapped counts both at the transcript level and after aggregating
the transcript counts at the gene level. For the evaluation, we
consider only genes with at least 25 uniquely mapping junction-
spanning reads, and each individual transcript is assigned the JCC
score of the corresponding gene. Overall, the association between
the inferential coefficient of variation and the JCC score is weak in
both libraries, at both the transcript and gene level (Fig S15). Thus,
the two scores measure different types of uncertainties; although
the bootstrap variability may capture assignment uncertainty
caused by shared sequence features among transcripts, it will not
in general pick up inconsistencies due to misannotation, which are
targeted by the JCC score.

The choice of reference annotation affects the JCC score
distribution

All analyses reported previously were performed using the Ensembl
GRCh38.90 annotation. To investigate the impact of the choice of
reference annotation on the JCC scores, we estimate bias models
and predict transcript coverage profiles also for all transcripts in
the CHESS 2.0 catalog (Pertea et al, 2018). We estimate corre-
sponding transcript abundances with Salmon and kallisto and
count junction-spanning reads for each annotated junction with
STAR. The CHESS catalog was obtained by assembling reads from
almost 10,000 GTEx samples and contains a larger number of
transcripts (annotated to a smaller number of genes) than the
Ensembl catalog (Table S1). The CHESS genes are all annotated with
a unique CHESS identifier, but a mapping to Entrez IDs is provided

Figure 3. Estimated abundances and JCC scores for the ZADH gene. (A) Observed coverage profile and annotated gene model for the ZADH2 gene in the HAP1 library.
Different annotated transcripts are shown in different colors. (B) Relative TPM estimates for the annotated transcripts from each of the eight transcript abundance
estimation methods. (C) Observed number of uniquely mapping junction-spanning reads (x) and scaled predicted junction coverages (y) based on transcript
abundance estimates from each of the eight methods. Each circle corresponds to an annotated junction and is colored according to the set of transcripts that it is
annotated to. The JCC scores for this gene based on the abundances from the respective abundance estimation approaches are indicated in the panel headers.
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wherever possible. For comparison with our other results, we
convert the Entrez IDs to Ensembl IDs using the org.Hs.eg.db
Bioconductor package v3.6.0 (in this way, unique Ensembl IDs are
obtained for 22,262/42,881 = 51.9% of the genes). Considering only
genes that are shared between the two annotation catalogs, it is
clear that there is a substantial difference between the scores
assigned to an individual gene using the two annotations (Fig 4A),
although the overall distribution of scores is largely similar
(Fig 4B). Neither annotation catalog is consistently leading to
lower scores than the other (Fig 4C), but there are genes with
substantially lower scores with each of the two annotations
compared with the other.

In addition, we investigate the effect of quantifying transcript
abundances using a data set–specific catalog of transcripts, ob-
tained by running StringTie (without the -e argument) on each of
the two Illumina libraries. The resulting gtf file contains many new
transcripts, and many annotated transcripts from the Ensembl
catalog are removed (Table S1). We apply a subset of the abundance
estimation methods to the respective StringTie annotations and
compare JCC scores across all genes present in both the StringTie
and Ensembl catalogs. Also in this case, no annotation consistently
lead to lower scores than the other, but there is a larger fraction of
genes that show lower scores with the sample-specific StringTie-
assembled annotation (Fig S16).

Figure 4. Comparison between scores obtained with the Ensembl GRCh38.90 annotation and the CHESS 2.0 annotation, for the HAP1 sample.
(A) Correlation between scores obtained with the CHESS annotation (x) and the Ensembl annotation (y), for all the shared genes (genes with an assigned Ensembl ID in the
CHESS catalog), with at least 25 uniquely mapping junction-spanning reads and at least 75% of the junction-spanning reads mapping uniquely with both annotations.
(B) Distribution of JCC scores for all genes with at least 25 uniquely mapping junction-spanning reads and at least 75% of the junction-spanning reads mapping
uniquely, in the respective annotation catalogs. (C) The number of genes shared between the two annotation catalogs for which the CHESS annotation results in a higher,
lower, or equal score compared with the Ensembl annotation. Blue bars represent genes for which scores based on the CHESS annotation are higher (worse) than those
based on the Ensembl annotation and green bars represent the opposite situation.
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Misannotated 39UTRs strongly affect the abundance estimates

To investigate the effect of misannotated or missing 39UTRs on the
transcript abundance estimates, and consequently the JCC score, in
more detail, we used synthetic data. For each of 4,514 annotated
genes, we generated an artificial transcript consisting of the coding
sequence of one isoform and the 39UTR of another isoform from the
same gene. The two contributing isoforms were selected in such a
way that one was annotated with a short 39UTR, and the other with a
long 39UTR (with a length difference of at least 1 kb) starting in the
same genomic location. As expected, for genes where the isoform
with the long 39UTR was selected to contribute the 39UTR to the
artificial transcript, a large fraction of the final artificial transcript
consists of the 39UTR, whereas the fraction is much smaller if the
39UTR was chosen from the isoform with the short 39UTR (Fig S17).

For the modified genes, reads are simulated only from the
artificial transcript. We also simulate reads from a random se-
lection of unmodified transcripts. As expected, the JCC scores for
the genes with modified transcripts are generally higher than
those for the genes without any modified transcripts, where
the reads are simulated from the correct annotation catalog
(Fig S18A). The distribution of scores for the latter set of genes can
be seen as a “baseline distribution” of scores that we can expect for
reasons unrelated to annotation and sequencing artifacts (e.g.,
sequence similarity causing problems for abundance estimation
methods). Furthermore, the JCC score is generally higher for genes
where a larger fraction of the artificial transcript is made up of the
39UTR (Fig S18B). Focusing only on the genes with modified tran-
scripts, we calculate the similarity between the artificial transcript
and all annotated transcripts from the same gene. The similarity
is defined by the Jaccard index of the nucleotide positions covered
by the two compared transcripts. We stratify the genes based on
whether the most similar transcript to the artificial transcript is the
one that contributed the internal structure, the one that contrib-
uted the 39UTR, or another one of the annotated transcripts. For
most abundance estimation methods, the annotated transcript
that is most similar to the artificial transcript (from which the reads
were generated) is also assigned the highest expression estimate
(Fig 5). The exceptions are SalmonCDS and StringTie, which both
generally assign the highest abundance to the transcript that is
most similar to the artificial transcript in terms of the internal
structure, rather than based on overall similarity. This is con-
sistent with the observation described previously that SalmonCDS
and StringTie tended to provide different scores than the other
methods.

To further investigate incompatible junction coverage patterns
induced by misannotated 39UTRs in the experimental data, we
generate an extended transcript catalog by expanding each ex-
plicitly annotated 39UTR to include the longest annotated 39UTR
starting in the same position. The resulting transcript is added to
the original set of Ensembl transcripts, with a suffix “longUTR”
added to the original identifier. A somewhat similar approach was
taken in a previous study (Zhang et al, 2017), which noted that
variations in the 59 and 39 ends of transcripts from Arabidopsis
thaliana can affect abundance estimation and alternative splicing
identification, and that padding of the 59 and 39 ends of transcripts
before transcript abundance estimation resulted in improved

correlation with splicing ratios from HR RT-PCR. Rerunning the JCC
score estimation with the expanded Ensembl catalog led to a
lower score for a set of genes, and a higher score for others (Fig
S19). The latter may potentially be explained by the increased
redundancy in the expanded catalog and illustrates that a more
extensive transcript catalog does not automatically lead to im-
proved abundance estimates. Focusing on the genes for which the
JCC score is consistently improved with the expanded catalog,
across abundance estimates from different methods, we could
indeed identify genes where the distribution of reads was largely
driven by a long 39UTR rather than adherence to internal JCC, and
where extending the 39UTR of transcripts with a compatible
junction chain improved the read assignment and thereby led to a
lower JCC score (Figs S20, S21, S22, S23, S24, S25, S26, S27, S28, and
S29).

Discussion

We have described the JCC score and shown how it can be used to
identify genes or genomic regions where junction coverage pat-
terns predicted from estimated transcript abundances are in-
compatible with those observed after alignment of the RNA-seq
reads directly to the genome. By using the RNA-seq data to obtain
two estimates of the number of reads mapping across each splice
junction, we can create an internal validation system, thereby
circumventing the need for an external data set or additional
replicates for evaluation of transcript abundance estimation ac-
curacy. A high score, indicating poor compatibility between the
junction coverages estimated from the transcript abundance es-
timates and the observed junction coverages, can be caused, for
example, by inaccurate transcript abundance estimates (e.g., for
transcripts that share large parts of their sequence with other
transcripts) or by an incomplete or incorrect transcriptome an-
notation. Regardless of the underlying cause, such genes should
be flagged in downstream analyses and the estimated tran-
script abundances interpreted with caution. We note that the
results were overall similar for all the eight transcript abun-
dance estimation approaches used in the study, representing
alignment-free methods and methods relying on either genome
or transcriptome alignments.

The chosen reference annotation can have a large effect on the
resulting JCC scores, as seen here by comparing the scores obtained
using the Ensembl annotation to those based on the CHESS 2.0
annotation. In addition, using StringTie to assemble missing tran-
scripts led to improved scores for a large number of genes and a
worse score for a smaller number of genes. As recommended
(https://github.com/alexdobin/STAR/blob/2.5.3a/doc/STARmanual.
pdf), we used the primary genome assembly from Ensembl for
aligning the reads to the genome. However, the transcriptome FASTA
files from Ensembl, which were used as the basis for abundance es-
timation by Salmon, SalmonKeepDup, kallisto, RSEM, and SalmonSTAR,
contain transcripts from alternative contigs that are not included in
the primary genome assembly. Many of these transcripts are
identical or very similar to transcripts annotated to the primary
chromosomes. Although this represents the typical use of these
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alignment files for alignment and transcript abundance estimation,
it may lead to problems for the correct assignment of the reads
to transcripts, and as a consequence, for the calculation of the JCC
scores. Keeping only one representative of duplicate transcript se-
quences (the default behaviour of Salmon) can lead to both better
abundance estimates and improved agreement between predicted
and observed junction coverages, under the assumption that the
correct transcript location is retained. Of course, determining the true
location of origin of a given transcript can be highly nontrivial, but
would be an interesting direction for future research.

One limitation of the presented family of JCC scores is that they
cannot be calculated for genes that do not have annotated
junctions or that do not have reads spanning junctions. A solution
to this could be to compare the predicted and observed coverage
profiles of the entire genomic locus rather than just the junctions.
However, multi-mapping reads will still pose a problem for the
comparison, and positions with a large fraction of multi-mapping
overlapping reads should be downweighted in the score. In general,

the approach we propose is not limited to junction coverages and
could be extended to, for example, disjoint exon bins. The re-
quirement is that we can observe the coverage pattern of the
features of interest from the genome alignment and predict it from
the alpine biasmodels and the estimated transcript abundances. In
addition, although we use the weighting function g(ω) to down-
weight the influence of junctions with a large fraction of multi-
mapping reads, it can be used more generally to assign weights to
junctions based on any characteristics affecting our confidence in
the observed read coverages.

Our evaluations are based on the assumption that we are in-
terested in obtaining and using transcript abundance estimates.
Other quantification approaches, for example, those focusing on
disjoint exon bins (Anders et al, 2012) or transcript equivalence
classes (Ntranos et al, 2016) have been suggested, and the resulting
counts may in themselves be less sensitive to uncertainties in the
reference transcript catalog. However, a post-processing step is
required to interpret the results in terms of known transcripts, and

Figure 5. Relative transcript abundances for modified genes in the simulated data set, with each of the eight transcript abundance estimation methods.
Genes are stratified (vertically) based on whether the transcript that is most similar (by Jaccard index of covered nucleotides) to the artificial transcript is the one
contributing the 39UTR, the one contributing the internal structure, or another isoform of the gene (see Fig 1C). For each gene, we calculate the relative abundance of the
transcript contributing the 39UTR, the one contributing the internal structure, and all other isoforms of the gene combined (indicated with color). Finally, the genes
are stratified (horizontally) based on whether the artificial transcript contains the long or short variant of the 39UTR. Generally, most methods assign the highest
abundance to the transcript that is most similar to the artificial transcript from which the reads were generated, with the exception of SalmonCDS and StringTie, which
assign higher abundances to the transcripts that are most similar to the artificial transcript in terms of the internal structure. The numbers above the boxplots indicate the
number of genes in each category.
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during this step, misannotated transcripts can still lead to erro-
neous conclusions.

Using simulated data, we observed that compared with the other
abundance estimation methods, StringTie appeared to focus more
on matching the internal structure than the 39UTR when assigning
abundances to transcripts. This implies that in situations where the
39UTR annotation is unclear, StringTie can help assigning the reads
to the transcript that is most similar with respect to the more
unambiguous part of the transcript structure. However, it could
potentially also make it more difficult to identify differences in
transcript composition between tissues because these have been
shown to be predominantly different in the transcription start and
end sites (Reyes & Huber, 2018).

Our results show that for the vast majority of the human genes,
the junction coverage patterns implied by the estimated transcript
abundances in our data sets agree well with the observed ones,
indicating that the reference annotation and transcript abundance
estimates for these genes are likely to be reliable. However, for each
transcript abundance estimation method, a small number of genes
obtained a high JCC score, suggesting unreliably quantified iso-
forms. These genes should be treated with care in any downstream
analyses or be investigated further for an improved transcriptome
annotation.

Materials and Methods

Experimental data and reference annotations

We use two deeply sequenced human polyA+ RNA-seq libraries for
our investigations. The first (Cortex) contains 117,292,547 paired-end
126-nt Illumina reads from a human cerebral cortex sample and the
second (HAP1) contains 55,234,720 paired-end 151-nt Illumina reads
from the HAP1 cell line. Both samples were prepared with the Illu-
mina TruSeq RNA-stranded protocol and sequenced at the Func-
tional Genomics Center in Zurich, Switzerland; Cortex with a HiSeq
2500 in October 2015 and HAP1 with a HiSeq 4000 in September 2017.
Most of our analyses are performed using the GRCh38.90 reference
annotation from Ensembl (Zerbino et al, 2018). For comparison, we
also use the recent CHESS 2.0 reference catalog (Pertea et al, 2018),
which was generated by assembling RNA-seq reads from almost
10,000 GTEx samples (GTEx Consortium, 2013; Carithers et al, 2015)
using StringTie (Pertea et al, 2015). Based on the original Ensembl gtf
file, we generate two additional gtf files, containing flattened exonic
regions and intronic regions (regions within a gene locus that are not
covered by any exon) and use featureCounts (Liao et al, 2014) (from
subread v1.6.0; [Liao et al, 2013]) to count the number of reads
overlapping these exonic and intronic regions for each gene.

Simulated data

In addition to the experimental RNA-seq data sets, we generate
synthetic data with the aim to better understand the effect of
misannotated 39UTR sequences. From the GRCh38.90 Ensembl an-
notation, we find 4,514 genes with multiple annotated 39UTRs starting
in the same position, and with length difference exceeding 1 kb. For
each of these genes we randomly extract one transcript annotated

with the short 39UTR and one transcript annotated with the long one.
We then generate an artificial transcript, consisting of the 59UTR and
coding sequence of one of these two transcripts and the 39UTR of the
other transcript (Fig 1C). For 41 of the 4,514 genes (0.9%), the artificial
transcript was identical to an annotated transcript (38 were identical
to the transcript providing the 39UTR, 3 to other isoforms of the gene).
These genes were not considered modified. We use the polyester
Bioconductor package (Frazee et al, 2015) (v1.16.0) to simulate ap-
proximately 1,000 strand-specific read pairs (read length 125 nt) from
each of the 4,473 remaining artificial transcripts, and a total of 10
million read pairs distributed between 10,000 randomly selected
transcripts, not annotated to any of the genes from which the ar-
tificial transcripts were generated. The simulated data set is then
processed using the original Ensembl GRCh38.90 annotation files
(which do not contain the artificial transcripts).

Transcript abundance estimation

We use eight methods to estimate abundances of the annotated
transcripts in each of the two Illumina libraries:

• RSEM. We build an index from the combined cDNA and ncRNA
reference FASTA files from Ensembl and estimate transcript
abundances with RSEM (Li & Dewey 2011) (v1.3.0), using bowtie
(Langmead et al, 2009) (v1.1.2) as the underlying aligner.
• Salmon. We build a transcriptome index from the combined cDNA
and ncRNA reference FASTA files from Ensembl and run Salmon
(Patro et al, 2017) (v0.11.0) in quasi-mapping mode, incorporating
sequence, GC, and positional bias correction. We also generate 100
bootstrap samples for estimation of the inferential variance for
each transcript. By default, Salmon removes duplicated sequences
in the reference catalog, keeping only one representative. In this
process, 12,824 transcripts from 4,499 genes were excluded from the
Ensembl GRCh38.90 catalog. In most of these cases, at least one of
the identical sequences can be found on an alternative contig (e.g.,
in the MHC region). It’s worth noting that these contigs are not
included in the primary genome assembly used for the genomic
alignments, whereas the transcripts are contained in the Ensembl
transcriptome FASTA files. 3,450 of the affected genes did not have
any other annotated transcript and were thus completely removed
from the annotation catalog.
• SalmonKeepDup. Here, we run Salmon with the same settings as
earlier, but retain all duplicated transcript sequences in the catalog
(which is an option during Salmon’s indexing step). Because the
retained transcripts are sequence identical, the estimated abun-
dances will be uniformly distributed within groups of identical
transcripts.
• kallisto. We build a transcriptome index from the combined cDNA
and ncRNA reference FASTA files from Ensembl and run kallisto
(Bray et al, 2016) (v0.44.0) with bias correction activated.
• Hera. The Hera index is built using the reference genome (primary
assembly) and the Ensembl gtf file, and Hera (https://github.com/
bioturing/hera) (v1.1) is run with default settings.
• HISAT2+StringTie. We build a HISAT2 (Kim et al, 2015) (v2.1.0) index
from the reference genome (primary assembly) and extract the
known splice sites using the provided hisat2_extract_splice_sites.
py script. The reads are aligned to this index with the option –dta set
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and given the known splice sites. Next, we run StringTie (Pertea et al,
2015) (v1.3.3b) without assembly of new transcripts (-e option) to get
the abundance estimates for the annotated transcripts.
• SalmonSTAR. For this approach, we build a transcriptome index
from the combined cDNA and ncRNA reference files from Ensembl
and align the reads using STAR (Dobin et al, 2013) (v2.5.3a). We
subsequently estimate transcript abundances using Salmon (v0.11.0)
in alignment-based mode, incorporating sequence and GC bias
correction.
• SalmonCDS. Here, we build the Salmon index using only the ex-
plicitly annotated coding sequences from Ensembl, and run Salmon
(v0.11.0) in quasi-mapping mode, incorporating sequence, GC, and
positional bias correction.

Prediction of expected junction coverage

To predict the expected number of reads mapping across each
junction, given estimates of the transcript abundances, we first fit a
fragment-level bias model using the alpine Bioconductor package
(Love et al, 2016) (v1.2.0). The bias model is fit for each library
separately, using a set of single-isoform genes with length between
600 and 7,000 bp and between 500 and 10,000 assigned reads. The
alpine biasmodel includes randomhexamer bias, fragment GC bias,
positional bias along the transcript, and the fragment length dis-
tribution. After fitting the bias model, we use it to obtain a predicted
coverage of each nucleotide in each annotated transcript using the
fitted parameters for these four terms. For transcripts where the
prediction fails (e.g., transcripts shorter than the estimated frag-
ment length and transcripts with no overlapping reads), we assume
a uniform coverage rather than excluding them from subsequent
analysis steps. Next, we rescale the predicted base-level coverages
by dividing with their total sum and multiplying with the average
fragment length and the estimated transcript counts from each of
the transcript abundance estimation methods to get an estimate
of the number of reads predicted to cover each position on the
transcript. We also extract the position of annotated splice junc-
tions within each transcript, and the predicted coverage at the base
just before an annotated junction is used as the predicted number
of reads from that transcript that align across the junction. Finally,
we sum the predicted number of junction-spanning reads for each
junction across all transcripts, in a strand-aware fashion (because
the libraries are stranded) to get the total number of reads pre-
dicted to span any given junction.

Observed junction coverage

The observed junction coverage (the number of reads mapping
across a given junction) is obtained using STAR (Dobin et al, 2013)
(v2.5.3a). We build an index using the reference genome (primary
assembly) and the Ensembl gtf file and align the reads with default
settings. The number of uniquely mapping and multi-mapping
reads spanning each annotated junction are extracted from the
SJ.out.tab output file from the STAR alignment. Observed junction
coverages can also be obtained by processing the bam file resulting
from the genome alignment, for example, using Bioconductor
packages such as QuasR (Gaidatzis et al, 2015) or GenomicAlign-
ments. For our purposes, the advantage of the STAR output is that

the numbers of uniquely mapping and multi-mapping reads
spanning each junction are reported separately.

The JCC score

To quantify the level of agreement between the predicted junction
coverages based on any of the transcript abundance estimation
methods and the observed number of junction reads from STAR, we
definea family of gene-wise JCC scores, parametrizedby twoarguments:
a weighting function g and a scaling indicator β (see the following
equation). For a given g and β, the JCC score for gene i is defined by

JCCi =

�
j2Ji

g
�
ωj

�
�������

0
@�

k2Ji
gðωkÞRk

�
k2Ji

gðωkÞCk

1
A

β

Cj −Rj

�������
�
j2Ji

g
�
ωj

�
Rj

;

where Ji denotes the set of junctions annotated to gene i (some
junctions are annotated to transcripts from multiple genes, in
which case they are included for all of them), Rj is the observed
number of uniquely mapping reads spanning junction j (obtained
from STAR), and Cj is the predicted number of reads spanning
junction j based on the bias model from alpine and the transcript
abundances from a given method. Multi-mapping reads (from
STAR) cause problems in the score calculation because it is not
clear how to assign them to junctions, and thus the contribution of
a junction is weighted by g(ωj), where g : ½0; 1�1½0;∞Þ is a non-
negative function andωj is the fraction of reads spanning junction j
that are uniquely mapping.

Overall differences in the number of reads assigned to gene i by
transcript abundance estimation compared with junction counts
can induce large differences between Cj and Rj even if their relative
coverage patterns are similar. The same is true if there is a large
fraction of multi-mapping reads, which are being included in the
predicted transcript abundances but not in the observed junction
coverages. To account for this, we include an optional scaling of the
predicted coverages to have the same (weighted) sum as the
observed coverages. This is represented by the β parameter—if this
is 0, no scaling is performed, and if it is 1, the values are scaled. In
this study, we set β = 1, and let

gðωÞ =
�
1 if ω ≥ 0:75
0 otherwise ;

that is, a step function that implies that only junctions with more
than 75% uniquely aligning reads are allowed to contribute to the
JCC score calculations. Overall, the JCC scores are robust to small
changes in the weight function (Fig S30); in particular, the function
only affects genes with a large number of multi-mapping reads.

With β = 1, which is the generally recommended setting, the JCC
score for a gene takes values between 0 and 2. Without this scaling,
multi-mapping reads can lead to large discrepancies between the
observed and predicted junction coverages because these reads are
typically contributing to the abundance estimates but not to the
observed junction coverages. A low JCC score means that the pre-
dicted junction coverages, given the abundance estimates for the
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transcripts in gene i, are compatible with the observed number of
reads mapping across the junctions, whereas a high score indicates
that for at least one junction, the predicted number of junction-
spanning reads does not match with the observed number.

Data access

Raw FASTQ files for the two Illumina libraries have been uploaded
to ArrayExpress (accession number: E-MTAB-7089). All code used to
perform the analyses is available from https://github.com/csoneson/
annotation_problem_txabundance. An R package enabling calculation
of the JCC score is available from https://github.com/csoneson/jcc.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201800175.
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