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Loss of miR-210 leads to progressive retinal degeneration
in Drosophila melanogaster
Carina MWeigelt1 , Oliver Hahn1, Katharina Arlt1, Matthias Gruhn2 , Annika J Jahn1, Jacqueline Eßer1, Jennifer A Werner1,
Corinna Klein3, Ansgar Büschges2, Sebastian Grönke1 , Linda Partridge1,4

miRNAs are small, non-coding RNAs that regulate gene expres-
sion post-transcriptionally. We used small RNA sequencing to
identify tissue-specific miRNAs in the adult brain, thorax, gut, and
fat body of Drosophila melanogaster. One of the most brain-
specific miRNAs that we identified was miR-210, an evolutionarily
highly conservedmiRNA implicated in the regulation of hypoxia in
mammals. In Drosophila, we show that miR-210 is specifically
expressed in sensory organs, including photoreceptors. miR-210
knockout mutants are not sensitive toward hypoxia but show
progressive degradation of photoreceptor cells, accompanied by
decreased photoreceptor potential, demonstrating an important
function of miR-210 in photoreceptor maintenance and survival.
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Introduction

miRNAs are small, non-coding RNAs of approximately 22 nucleotides
that regulate gene expression post-transcriptionally. miRNAs bind
their targets by complementary seed matches in the 39-UTR of
mRNAs. Regulation of mRNA expression by miRNAs occurs through
two different post-transcriptional mechanisms: mRNA cleavage or
translational repression (Bartel, 2009).miRNAs are often expressed in
a specific cell type associated with their function. For example, miR-
124 is brain specifically expressed and plays a role in brain function in
diverse species ranging from Caenorhabditis elegans and Drosophila
to mammals (Kapsimali et al, 2007; Clark et al, 2010; Weng & Cohen,
2012). Hence, identification of tissue-specific miRNAs is crucial to
understand their function. Previous studies have analysed miRNA
expression pattern in whole bodies, heads, and ovaries/testes of
Drosophila (Fagegaltier et al, 2014) and during Drosophila devel-
opment (Aboobaker et al, 2005). More recently, FlyAtlas2 included
alsomiRNA expression in certain tissues (Leader et al, 2018), but little
is known about distribution of miRNAs in metabolically important
adult Drosophila tissues such as brain, muscles, fat body, and gut.

In this study, we used next-generation sequencing of small RNAs
to identify tissue-specific miRNAs in adult brain, thorax, gut, and fat
body tissues of 10 d old, wild-type Drosophila flies. We identified
many brain-specific miRNAs, including the highly evolutionarily
conserved miR-210. miR-210 has been intensively studied in the
context of the response to hypoxia in mammalian cell culture
(Camps et al, 2008; Fasanaro et al, 2008; Giannakakis et al, 2008;
Pulkkinen et al, 2008; Chan et al, 2009; Huang et al, 2009). Fur-
thermore, several mouse studies have verified that miR-210 is also
up-regulated in hypoxic conditions in vivo inmodels for ischemia or
pulmonary hypertension (Pulkkinen et al, 2008; Zaccagnini et al,
2014; White et al, 2015). Recently, several studies linked miR-210 to
the circadian clock in Drosophila, as it is up-regulated in cyc01

mutants, which have an impaired circadian clock (Yang et al, 2008).
Furthermore, overexpression of miR-210 affected circadian loco-
motor activity in Drosophila (Cusumano et al, 2018; You et al, 2018).

We have found that miR-210 is specifically expressed in pho-
toreceptors, ocelli, and the antennal lobes. Loss of miR-210 led to
progressive loss of photoreceptor integrity, accompanied by re-
duced photoreceptor function asmeasured by electroretinography.
Furthermore, we used RNA sequencing to identify putative miR-210
target genes. Altogether, we have produced an expression atlas
for miRNAs in adult Drosophila tissues, and we describe a novel
function for miR-210 in vivo in photoreceptor maintenance.

Results

Identification of tissue-specific miRNAs by small RNA sequencing

To generate a Drosophila miRNA expression atlas for adult tissues,
we used next-generation sequencing on dissected brain, thorax,
gut, and fat body of 10-d-old, female wild-type flies (n = 3) (Sup-
plemental Data 1). We evaluated tissue specificity of single miRNAs
by a tissue specificity score, similar to a previous approach to
identify tissue-specific miRNAs in mammals (Landgraf et al, 2007).
Of the total 184 detectedmiRNAs, 75 showed a highly tissue-specific

1Max Planck Institute for Biology of Ageing, Cologne, Germany 2Department for Animal Physiology, Biocenter Cologne, Institute of Zoology, Cologne, Germany 3Cluster of
Excellence—Cellular Stress Responses in Aging-Associated Diseases Research Centre, University of Cologne, Cologne, Germany 4Institute of Healthy Ageing, Genetics,
Evolution and Environment, University College London, London, UK

Correspondence: sgroenke@age.mpg.de; Partridge@age.mpg.de

© 2019 Weigelt et al. https://doi.org/10.26508/lsa.201800149 vol 2 | no 1 | e201800149 1 of 13

on 10 April, 2024life-science-alliance.org Downloaded from 
http://doi.org/10.26508/lsa.201800149Published Online: 22 January, 2019 | Supp Info: 

http://crossmark.crossref.org/dialog/?doi=10.26508/lsa.201800149&domain=pdf
https://orcid.org/0000-0001-8556-4259
https://orcid.org/0000-0001-8556-4259
https://orcid.org/0000-0003-0115-5189
https://orcid.org/0000-0003-0115-5189
https://orcid.org/0000-0002-1539-5346
https://orcid.org/0000-0002-1539-5346
https://orcid.org/0000-0002-1539-5346
https://orcid.org/0000-0001-9615-0094
https://orcid.org/0000-0001-9615-0094
https://doi.org/10.26508/lsa.201800149
mailto:sgroenke@age.mpg.de
mailto:Partridge@age.mpg.de
https://doi.org/10.26508/lsa.201800149
https://www.life-science-alliance.org/
http://doi.org/10.26508/lsa.201800149


expression pattern (Fig 1A), with 44 brain-specific, 21 gut-specific,
and 10 fat body–specific miRNAs. Most miRNAs with tissue-specific
expression were preferentially expressed in the brain. Our RNA
sequencing approach verified the expression pattern of several
well-studied miRNAs, for example, miR-124, which is highly brain-
specific from worms to mammals and plays an important role in
neuronal development and function (Kapsimali et al, 2007; Clark
et al, 2010; Weng & Cohen, 2012). Moreover, our analysis also
revealed tissue-specific expression of several less-studied miRNAs,
indicating a potential function for them. For example, miR-958 was
the most gut-specific miRNA detected in our study, and initial
studies have linked miR-958 to the Drosophila innate immune
system (Li et al, 2017). Our results suggest that the gut-specific miR-
958 might contribute to the gut-specific responses to bacterial
infection. Another interesting gut-specific miRNA is miR-314, which
has been previously studied in the midgut upon exposure to xe-
nobiotics (Chandra et al, 2015), verifying that miR-314 indeed plays
an important function in the gut. No miRNA reached the tissue-
specificity threshold in the thorax, but we identified several miRNAs
that were at least enriched in the thorax, including the well-studied
miR-1, which is specifically expressed in muscle from worms to
humans (Kwon et al, 2005; Sokol & Ambros, 2005; Zhao et al, 2005;
Chen et al, 2006; Simon et al, 2008).

Among the tissue-specific miRNAs, we identified the highly
expressed and probably active dme-miR-210-3p and the lower ex-
pressed dme-miR-210-5p*, which were both specifically expressed
in the brain. MiR-210 is an evolutionarily highly conserved miRNA
that in mammals has been implicated in response to hypoxic
conditions. However, a function for miR-210 in the brain is currently
unknown. Thus, we decided to further investigate the role of miR-210

in the fly brain. We first verified the brain-specific expression pattern
of miR-210 by miRNA quantitative real-time PCR (qRT-PCR) (***P <
0.001 brain versus fat body/thorax/gut, n = 3) (Fig 1B) and found that
miR-210 was only weakly expressed during development but was
activated during late pupal stages and maintained active in adult
flies (n = 3) (Fig 1C). The brain-specific expression of miR-210 in adult
flies suggests that it might have a specific role in the maintenance of
adult brain function.

miR-210 function is not essential for survival under hypoxic
conditions in flies

In mammals, miR-210 expression is up-regulated under hypoxia by
the transcription factor HIF-1α (Camps et al, 2008; Fasanaro et al,
2008; Pulkkinen et al, 2008). The hypoxia pathway, including HIF-1α,
is highly conserved between flies and mammals (Lavista-Llanos
et al, 2002), but it is currently unclear if miR-210 is also involved in
the response to hypoxia in flies. Therefore, we used qRT-PCR to
measure whether miR-210 is also induced by hypoxia in adult flies.
However, miR-210 expression was not induced when flies were
exposed to 6 h of 2.5% O2 (Fig S1A), which was sufficient to activate
the expression of the well-known HIF-1α target Scylla (**P < 0.01, n = 3)
(Reiling & Hafen, 2004). To further study the potential role of miR-
210 in hypoxia in Drosophila, we used CRISPR/Cas9-mediated ge-
nomic engineering to generate an miR-210 null mutant, termed
miR-210Δ. Lack of miR-210 expression in the miR-210 null mutant
was verified by qRT-PCR (****P < 0.0001, n = 3) (Fig S1B). miR-210Δ
mutant larvae or adult flies behaved as wDahomey (wDah) wild-
type flies under hypoxic conditions, in contrast to the positive
control, heterozygous Sima (HIF-1α) mutant larvae and adult flies

Figure 1. Tissue-specific expression atlas of miRNAs
in adult Drosophila.
(A) Small RNA sequencing of brain, thorax, gut, and
fat body tissue of 10-d-old, female, wild-type flies
revealed tissue-specific miRNAs (n = 3). Top 50 tissue-
specific miRNAs are shown (red = brain, green = thorax,
blue = gut, and yellow = fat body). (B) qRT-PCR verified
that miR-210 is highly brain specifically expressed in
10-d-old, female, wild-type flies (***P < 0.001; one-way
ANOVA, n = 3). (C) miR-210 was lowly expressed during
embryonic and larval development and increased in
expression at late pupal stages and in adult flies. Up to
20-h-old embryos and wandering L3 larvae were used.
We used whole animals for this experiment (n = 3).
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that showed decreased survival (***P < 0.001) (Fig S1C and D). This
result suggests that miR-210 is not an essential mediator of the
hypoxia response in flies. Hypoxia is a potent regulator of target of
rapamycin (TOR) signalling (Arsham et al, 2003). Therefore, we also
investigated TOR-related phenotypes in the miR-210Δ mutant flies.
In line with the hypoxia experiments, we found no striking differ-
ences between miR-210Δ and control flies in lifespan (n = 200,
females: n.s., andmales: **P < 0.01) (Fig S1E). This result is in contrast
to a recent study, which reports decreased lifespan of miR-210
mutant males (Chen et al, 2014). Differences in genetic background
or lack of adjusting the genetic background in the study by Chen
et al (2014) might explain this discrepancy. In line with the lifespan
results, starvation stress resistance (n = 100), body weight (n~50,
*P < 0.05), and egg laying (n = 100) were also not affected by lack of
miR-210 (Fig S1F–H), suggesting that miR-210Δ does not influence
TOR signalling systemically. In summary, in contrast to mammalian
cell culture, where miR-210 is up-regulated under hypoxia (Camps
et al, 2008; Fasanaro et al, 2008; Pulkkinen et al, 2008), we did not
detect induction of miR-210 in vivo when exposing flies to hypoxic
conditions, and resistance to hypoxia was unaffected by its ab-
sence. Consistently, a screen for hypoxia-regulated miRNAs in
Drosophila did not identify miR-210 (De Lella Ezcurra et al, 2016).
Thus, the function of miR-210 in response to hypoxia might not
be conserved between flies and mammals. However, we currently
cannot exclude that miR-210 is only regulated by hypoxia in a
subset of cells and, therefore, might cause only local effects.

Loss of miR-210 leads to retinal degeneration

To dissect the function of miR-210 in the brain, we used CRISPR/
Cas9 to generate an miR-210Δ GFP reporter line (miR-210Δ GFP) to
study in which cells of the brain miR-210 is expressed. Interestingly,
miR-210Δ GFP expression was highly specific to the fly compound
eye, the ocelli, and the antennal lobes (Fig 2A), which are important
for sensing light and olfactory cues. By co-immunostaining miR-
210Δ GFP with the photoreceptor marker chaoptin (Fujita et al, 1982),
we demonstrated that miR-210 is expressed in photoreceptor cells
projecting into the lamina and medulla of the fly optic lobes (Fig 2A
and B). By whole-mount retina staining and cryosections of miR-
210Δ GFP heads, we further demonstrated that miR-210 is also
expressed in the fly retina, including photoreceptors and poten-
tially pigment cells (Fig 2C and D). During preparation of this
manuscript, another study showed a similar expression pattern for
miR-210 in the fly brain (Cusumano et al, 2018), validating our
findings. Thus, we showed that miR-210 is specifically expressed in
the sensory organs of the fly, including the retina.

The function of the fly eye is well characterized, and the path-
ways involved in phototransduction are partially conserved be-
tween flies and mammals (Xu et al, 1999; Montell, 2012; Sen et al,
2013). Given its specific expression in the fly eye, we wondered if the
morphology and function of the fly eye is altered in miR-210Δ
mutant flies. In fly retinas, R1-R6 and R7 can be visualized by
chaoptin immunostaining. Throughout life, wild-type flies retained
a very well-structured and organized pattern of R1-R6 and R7 in
each ommatidium (Fig 3A). Retinas of very young (day 0) miR-210Δ
mutants showed an apparently normal arrangement of R1-R6 and
R7 photoreceptor cells, suggesting that miR-210 function is not

essential for photoreceptor differentiation. However, already at
10 d of age, miR-210Δ mutant photoreceptor cells showed altered
arrangement and morphology, and at 42 d of age, individual
photoreceptor cells could not be identified anymore (Fig 3A). To
quantify the functional decline of photoreceptor cells in miR-210Δ
mutants, we used electroretinography to measure the receptor
potential in photoreceptor cells (n = 5-8). In line with immuno-
staining, wild-type flies showed a stable receptor potential that did
not decline even late in life. By contrast, in miR-210Δ flies, the
receptor potential decreased strongly with age, verifying that there
was functional decline (****P < 0.0001) (Fig 3B and C). Next, we used
toluidine-stained semi-thin sections and transmission electron
microscopy (TEM) to investigate the retinal degeneration in more
detail. We used a closer time window (1 h, 2 d, 4 d, and 10 d) to obtain
a better temporal resolution. In line with our previous immuno-
stainings, miR-210Δ photoreceptor cells degenerated rapidly (Fig
3D). The higher resolution of TEM allowed us to detect differences in
rhabdomere morphology of miR-210Δ mutants even in very young
flies (1 h old, white arrows), which was not possible by immuno-
staining. Thus, lack of miR-210 might also mildly affect photore-
ceptor development. TEM also revealed the occurrence of vacuoles
(arrowheads in Fig 3D), after the photoreceptor cells disappeared,
which might implicate autophagic clearance of photoreceptor
remnants. We further validated that the observed phenotype is
caused by loss of miR-210 by using an independently generated
miR-210 mutant line (miR-210ΔSeed), in which we deleted the
functional seed sequence of miR-210 via CRISPR/Cas9. In addition,
we did a genetic complementation assay by crossing miR-210Δ
mutants to a deficiency fly stock (Df(1)BSC352) encompassing the
miR-210 gene locus. Similar to miR-210Δ mutants, miR-210ΔSeed
and miR-210Δ/Df(1)BSC352 mutant flies presented a strong retinal
degeneration phenotype at 4 d of age (Fig S2A and B). In summary,
we show that loss of miR-210 leads to retinal degradation ac-
companied by a functional decline of photoreceptor neurons with
age. The presence of R1-R6 and R7 photoreceptor cells and a wild-
type–like receptor potential measured in freshly eclosed flies and
the fast degradation of photoreceptor neurons within a few days
suggest that miR-210 expression in the photoreceptors, lamina,
and/ormedulla is crucial for themaintenance and function of adult
photoreceptor neurons.

To provide further evidence that the observed retinal de-
generation phenotype was caused by loss of miR-210 function, we
performed rescue experiments by overexpression of miR-210 using
the eye-specific GMR-Gal4 driver line. First, we showed that over-
expression of miR-210 in the wild-type background per se did not
lead to retinal degeneration or altered function of photoreceptors
as measured by immunostainings and electroretinography (Fig S3A
and B). However, we noted by TEM that overexpression of miR-210
in the eye led to several ommatidia that presented eight visible
rhabdomers, which might be split rhabdomers (Fig S3C). Next, we
showed by qRT-PCR that GMR-Gal4–mediated overexpression of
miR-210 in the miR-210Δ–mutant background restored miR-210
expression to slightly higher levels than observed in wild-type
flies (n = 3) (Fig 4A). Notably, overexpression of miR-210 rescued
the miR-210Δ–dependent decline in photoreceptor potential. Re-
ceptor potential of miR-210Δ; GMR-Gal4>UAS-miR-210 mutants was
significantly increased compared with miR-210Δ controls (n = 7;
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***P < 0.001) (Fig 4B). Surprisingly, UAS-miR-210/+ control flies in
the miR-210Δ background already had a significantly increased
receptor potential compared with GMR-Gal4/+mutants in themiR-
210Δ background (*P < 0.05), which might be explained by leaky
expression from the UAS-promoter (Fig 4A). TEM of miR-210Δ; GMR-
Gal4>UAS-miR-210 flies also showed a partial rescue of the retinal
degeneration phenotype and a reduction in the size and number of
vacuoles (Fig 4C). Similar to the overexpression of miR-210 in the
wild-type background, we also occasionally observed eight rhab-
domeres upon overexpression of miR-210 in miR-210Δ mutants. In
summary, we were able to at least partially rescue the retinal
degeneration phenotype, demonstrating that the observed phe-
notype is indeed caused by a lack ofmiR-210 function. That we only

obtained a partial rescue might be explained by differences be-
tween the expression of the GMR-Gal4 driver line and the en-
dogenous expression pattern of miR-210 or by the mild phenotype
of miR-210 overexpression alone.

miR-210–mediated retinal degeneration is independent of light
and apoptosis

miR-210 has been previously linked to the circadian clock (Yang
et al, 2008, 2018; Cusumano et al, 2018), which is entrained by light.
As miR-210 is expressed in the fly eye, we wondered if miR-210
expression changes rhythmically during the day and whether the
retinal degeneration seen in miR-210Δ mutants might depend on

Figure 2. miR-210 is expressed in the fly eye.
(A, B) Whole-mount immunostainings of miR-210Δ GFP
reporter fly brains with anti-GFP antibody revealed a
specific expression pattern of miR-210 (green) in the
lamina and medulla of the optic lobes (left and right
side of the brain), ocelli (top side of the brain), and
antennal lobes (in the middle of the brain). miR-210
(green) expression patterns were overlapping with the
photoreceptor marker chaoptin (red) in the medulla
and lamina. (C, D) Whole-mount immunostainings and
cryosections of miR-210Δ GFP reporter fly brains with
anti-GFP antibody demonstrated that miR-210 is also
expressed in the fly retina.
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light, as has been shown for other mutations that cause retinal
degeneration in the fly eye (Harris & Stark, 1977; Dolph et al, 1993;
Kiselev et al, 2000; Johnson et al, 2002). However, miR-210 was not
expressed in a circadian-dependent manner (n = 3) (Fig S4A), in line
with a previous publication (Yang et al, 2008). In addition, miR-210

expression did not change in flies that were maintained for 48 h
under constant light or constant darkness (n = 3) (Fig S4B), indi-
cating that the expression of miR-210 is not regulated by light.
Keeping miR-210Δ mutants under constant light or constant dark-
ness during development and adulthood did not affect the retinal

A

B

D

C

Figure 3. Loss ofmiR-210 leads to progressive retinal
degradation with age.
(A) Immunostaining of retinas with chaoptin (red,
marker for photoreceptors) showed loss of
photoreceptor arrangement and integrity in miR-210Δ
mutants, but not in wild-type controls, with age. (B, C)
The receptor potential in miR-210Δ mutants, but not in
controls, decreased with age as determined by
electroretinography (age: n.s.; genotype: ****P < 0.0001;
interaction: *P < 0.05; and two-way ANOVA, n = 5–8). (D)
Toluidine-stained semi-thin sections (upper panel,
blue) and TEM (lower panels) verified that
photoreceptor cells progressively disappeared in miR-
210Δmutant, but not wild-type, eyes (1 h–10-d old flies).
Notably, morphology of rhabdomeres (arrows) was
already altered in 1-h-old miR-210Δ mutants. The
number and size of vacuoles (arrowheads) increased
with age in miR-210Δ mutants.

miR-210 KO leads to retinal degeneration Weigelt et al. https://doi.org/10.26508/lsa.201800149 vol 2 | no 1 | e201800149 5 of 13

https://doi.org/10.26508/lsa.201800149


degeneration phenotype as compared with flies kept under 12 h/12 h
light/dark conditions (Fig S4C), indicating that the mechanisms by
which lack of miR-210 affects retinal degeneration is not light de-
pendent. Block of apoptosis rescues several retinal degeneration
mutants (Kiselev et al, 2000; Johnson et al, 2002); however, block of
apoptosis by overexpression of the antiapoptotic p35 protein did
not rescue the receptor potential of miR-210Δ mutants (n = 5) (Fig
S4D), suggesting that retinal degeneration caused by lack of miR-
210 function is not acting via p35-dependent induction of apo-
ptosis. Thus, our results suggest that miR-210–mediated retinal
degeneration is independent of light and apoptosis and that other
mechanisms must underlie the observed phenotype.

Identification of putative miR-210 targets by RNA sequencing

To address which mechanisms might underlie miR-210–dependent
degeneration of photoreceptor cells, we performed RNA sequencing
analysis, by comparing the expression profiles of miR-210Δ null
mutants with control flies to identify potential miR-210 target genes.
Therefore, we used heads of 1-h-oldmiR-210Δmutants (n = 3), a time
point where photoreceptor cells showed only mild morphological

differences but were still functional (Fig 3A–D). As miRNAs are known
to down-regulate their targets, we expected direct miR-210 target
genes to be up-regulated in miR-210Δ mutant flies. The RNA se-
quencing, resulted in the detection of approximately 8,500 genes of
which 812 were differentially regulated between miR-210Δ mutant
and control flies (Supplemental Data 2). Most differentially regulated
genes (509) were down-regulated inmiR-210Δ mutants, but 303 genes
were up-regulated (Fig 5A). Gene ontology (GO) term analysis showed
a strong enrichment for genes involved in phototransduction and
rhabdomere function, consistent with our hypothesis that miR-210 is
essential for vision (Fig 5B). Furthermore, up-regulated genes
were enriched for the GO term fatty acid biosynthetic process and
lipid metabolic process (Fig 5B). Lipid signalling is important for
the phototransduction cascade, as G-protein–coupled hydrolysis
of the phospholipid phosphatidylinositol 4,5-bisphosphate plays
a key role in signal transduction upon light stimulation (Raghu
et al, 2012). Notably, we analysed the gene expression changes in
the whole head of flies and not specific for photoreceptor cells,
suggesting that changes in expression in photoreceptors are
underestimated. The differences in the transcriptome of 1-h-old
miR-210Δ flies indicate the cells had already started to change at

Figure 4. Overexpression of miR-210 in miR-210Δ
eyes partially rescued the photoreceptor
degeneration.
(A) Overexpression of miR-210 in miR-210Δ; GMR-
Gal4>UAS-miR-210 flies was verified by qRT-PCR (**P <
0.01; one-way ANOVA, n = 3). (B) ERG showed that the
receptor potential inmiR-210Δ; GMR-Gal4>UAS-miR-210
flies was significantly increased compared with the UAS
and Gal4 driver control in the miR-210Δ background in
4-d-old flies (miR210Δ; GMR-Gal4>UAS-miR-210 versus
miR-210Δ; GMR-Gal4/+ or versus miR-210Δ; and UAS-
miR210/+: ***P < 0.001, one-way ANOVA, followed by
Tukey post hoc test). miR-210Δ; UAS-miR-210/+ control
flies already showed a slightly increased receptor
potential (*P < 0.05; one-way ANOVA, n = 7). (C)
Toluidine-stained semi-thin sections (upper panel)
and (lower panel) TEM demonstrated that the number
of rhabdomeres (arrow) increased in both miR-210Δ;
UAS-miR-210/+ control flies and miR-210Δ; GMR-
Gal4>UAS-miR-210 mutants (4 d old). The number and
size of vacuoles (arrowheads) decreased in comparison
with miR-210Δ; GMR-Gal4/+ control flies.
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the molecular level, although we detected only mild morpho-
logical differences at this age based on TEM (Fig 3D). These results
might suggest that the retinal degeneration observed inmiR-210Δ
is extremely fast or might already start during late pupae
development.

Diacylglycerol kinase (Dgk) showed the strongest up-regulation,
with an induction of seven to eightfold in miR-210Δ mutant flies
(n = 3, ***P < 0.001) (Figs 5A and S5A), and TargetScan analysis
(Lewis et al, 2005) identified two miR-210-3p and one miR-210-5p*
seed matches in the open reading frame of Dgk. Furthermore,
diacylglycerol kinases such as the retinal degeneration gene A
(rdgA) have been implicated in retinal degeneration in the fly
(Masai et al, 1992, 1993, 1997; Harden et al, 1993), making Dgk a prime
candidate to mediate retinal degeneration upon loss of miR-210.
However, knockdown of Dgk in the miR-210Δ mutant background
did not rescue retinal degeneration, and overexpression of Dgk did

not induce retinal degeneration in miR-210Δ mutants (Fig S5B–G).
These results might suggest that Dgk is not a causal target in retinal
degeneration or that miR-210 targets several proteins that have to
act in concert to cause retinal degeneration in miR-210Δ flies. To
identify direct targets of miR-210, we combined the RNA sequencing
analysis with computer-based prediction algorithms (Grun et al,
2005; Lewis et al, 2005). As most algorithms produce many false-
positive hits, we used a more stringent analysis by overlapping the
predicted miR-210 targets by PicTar and TargetScan and generated
a set of 42 high-confidence miR-210 targets that were predicted by
both algorithms. Comparison of the 42 miR-210 targets with our RNA
sequencing data allowed us to identify four putative miR-210
targets: Apc, CG5554, Fasn1, and Vha55 (Fig 5C). One or more of
these genes may, therefore, be direct miR-210 targets in vivo. To
test this, we used transgenic RNAi to knockdown Apc, Vha55, and
Fasn1 in the miR-210Δ mutant background and measured the

Figure 5. Transcriptome analysis ofmiR-210Δmutant
flies revealed potential miR-210 targets.
(A) 812 differentially expressed RNAs were identified in
1 h old miR-210Δ heads compared with control by RNA
sequencing (*adjusted P value < 0.05, n = 3). (B) GO
enrichment of differentially regulated mRNAs
demonstrated that many genes with GO terms related
to phototransduction and vision were down-regulated.
(C) Four potential miR-210 targets predicted by PicTar
and TargetScan were also up-regulated on RNA level in
miR-210Δ mutant flies. (D) The receptor potential of
miR-210Δ mutants was partially rescued by Fasn1 RNAi
as measured by ERG in 4-d-old flies (miR-210Δ; GMR-
Gal4/+ versus miR-210Δ; and GMR-Gal4>UAS-Fasn1
RNAi: *P < 0.05, n = 7–9). (E) Photoreceptors inmiR-210Δ;
GMR-Gal4> Fasn1 RNAi showed a similar grade of retinal
degeneration compared withmiR-210Δ controls. (F) ERG
showed that the receptor potential of miR-210Δ
mutants was significantly increased by overexpression
of bmm lipase (miR-210Δ; GMR-Gal4/+ versusmiR-210Δ;
GMR-Gal4>UAS-bmm: ***P < 0.001; miR-210Δ; UAS-
bmm/+ versus miR-210Δ; and GMR-Gal4>UAS-bmm:
*P < 0.05, n = 4–5).
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electroretinograms (ERG) of these flies at 4 d of age. Interestingly,
RNAi-mediated knockdown of fatty acid synthase 1 (Fasn1) but not
of Apc or Vha55 partially rescued the ERG defects of miR-210Δ
mutant flies (n = 5-7; *P < 0.05) (Fig 5D), suggesting that up-
regulation of Fasn1 activity might contribute to the retinal de-
generation observed in miR-210Δ mutants. Notably, photoreceptor
morphology in Fasn1 RNAi rescue flies was still abnormal, verifying
that knockdown of Fasn1 RNAi can only partially rescue miR-210–
dependent retinal degeneration. Next, we overexpressed Fasn1 in
the fly eye of wild-type flies using a previously published UAS-
Fasn1 mutant line (Garrido et al, 2015), to test if overexpression of
Fasn1 would be sufficient to cause retinal degeneration. However,
ERGs of Fasn1 overexpression flies did not show any abnormalities
even in 10-d-old flies (n = 4-5) (Fig S6A), demonstrating that Fasn1
up-regulation alone was not sufficient to cause retinal de-
generation, which suggests the contribution of further genes to the
observed phenotype. To test whether miR-210 is able to bind and
degrade Fasn1 directly, we performed an in vitro luciferase assay
targeting the 39-UTR of Fasn1. However, we were not able to detect
an miR-210–dependent decrease in luminescence when compared
with a scrambled control (Fig S6B). Thus, it is currently not clear
whether Fasn1 is a direct target of miR-210 in vivo or whether the
regulation of Fasn1 is part of a toxic downstream mechanism.
Down-regulation of Fasn1 is expected to result in decreased li-
pogenesis. To test whether we would also be able to rescue the
phenotype of miR-210 mutants by increasing lipolysis, we overex-
pressed the triacylglyceride lipase Brummer (Bmm) (Grönke et al, 2005)
in miR-210Δ mutants. Similar to the knockdown of Fasn1, over-
expression of Bmm partially rescued miR-210Δ–induced retinal de-
generation asmeasured by ERG (n = 4-5, ***P < 0.001) (Fig 5F), indicating
lipid accumulation as a potential downstream mechanism mediating
the toxicity upon lack of miR-210 in the fly retina. Interestingly, lipid
metabolism has previously been implicated in retinal degeneration in
flies, for example , the fatty acid transporter protein (FATP) is important
for lipid homeostasis in the retina and is essential for photoreceptor
survival (Dourlen et al, 2012, Van Den Brink et al, 2018). Furthermore,
mitochondrial dysfunction leads to glial lipid accumulation and
ultimately retinal degeneration (Liu et al, 2015). Lipid metabolic
processes were identified as an enriched GO term in our RNA
sequencing experiment, which is consistent with the hypothesis
that altered lipid homeostasis, might contribute to the retinal de-
generation observed in miR-210Δ mutant flies.

In summary, we demonstrated that miR-210 is highly specifically
expressed in the fly eye and loss-of miR-210 leads to strong retinal
degradation with age, accompanied by changes in the tran-
scriptome already at young age. Our results suggest that miR-210
plays a crucial role in photoreceptor maintenance and that a
disrupted lipid homeostasis might cause the miR-210Δ–dependent
retinal degeneration.

The functional seed sequence “UGCGUGU” of miR-210 is 100%
identical between flies, mice, and humans, but interestingly miR-
210 is not present in C. elegans (Griffiths-Jones et al, 2006), which
lacks an eye. The high evolutionary conservation might suggest that
the function of miR-210 in photoreceptor maintenance could be
conserved from flies tomammals. Genome-wide expression studies
indicated previously that miR-210 is enriched in the mouse eye (Xu
et al, 2007; Hackler et al, 2010; Karali et al, 2016), similarly to the

photoreceptor-specific expression of miR-210 that we observed in
the fly. The eye-specific expression of miR-210 in mice raises the
possibility that its function in the eye is evolutionarily conserved
between flies and mice. In mice, other eye-specific miRNAs such as
the miR-183/96/182 cluster have been shown to play a crucial role
in photoreceptor maintenance (Lumayag et al, 2013; Busskamp et al,
2014), demonstrating that miRNAs indeed are essential for vision in
mammals. Furthermore, previous studies have demonstrated that
miR-210 is expressed in the mouse retina and is induced in light-
adapted compared with dark-adapted mouse retinas (Krol et al,
2010). miR-210 was also up-regulated in a mouse model of oxygen-
induced retinopathy (Liu et al, 2016), linking the expression of miR-
210 in the eye to oxygen. AlthoughmiR-210 expression in the human
eye was not detected in a recent deep sequencing study (Karali
et al, 2016), miR-210 was identified as an eye-expressed miRNA in
another study (Ragusa et al, 2013). Furthermore, miR-210 has been
associated with age-related macular degeneration (AMD), a human
disease that leads to blindness with age. In a genome-wide as-
sociation study in humans, a single-nucleotide polymorphism was
identified in the miR-210–binding site of Complement Factor B
(Ghanbari et al, 2017). This single-nucleotide polymorphism caused
reduced miR-210 binding and increased level of its target com-
plement factor B, which is a known player in AMD, thereby possibly
contributing to the AMD disease mechanism. Strikingly, hypoxia and
angiogenesis are heavily involved in AMD (Blasiak et al, 2014),
linking the function of miR-210 in hypoxia and angiogenesis in
mammals to the retinal degeneration we observed in miR-210Δ
mutant flies. In the future, it will be essential to investigate the role
ofmiR-210 inmammalian eye function.miR-210 KOmice are available
and have been used in studies investigating the immune system
(Mok et al, 2013; Wang et al, 2014) and pulmonary hypertension (White
et al, 2015). However, the eye function ofmiR-210 KOmice has not yet
been investigated.

In summary, we demonstrated for the first time a crucial role for
miR-210 in the function andmorphology of the fly eye. As miR-210 is
also expressed in the retina of mice, it is tempting to speculate that
miR-210 might also fulfil a similar role in the mammalian eye.

Materials and Methods

Maintenance of flies

Fly stocks were kept at 25°C on a 12-h light and 12-h dark cycle and
fed a standard sugar/yeast/agar diet (Bass et al, 2007). The light
intensity in the fly chambers was around 1,000 lux. The flies were
reared at controlled larval densities, and once-mated female flies
were used for all experiments unless otherwise stated. The flies
were snap-frozen with liquid nitrogen. Dissections were carried out
in PBS and tissues either directly analysed or frozen on dry ice.

Transgenic flies were backcrossed into the outbred white
Dahomey (wDah) or red Dahomey (rDah) wild-type strain (Grönke
et al, 2010) with the endosymbiont Wolbachia for at least six
generations, if necessary. The following transgenic fly lines were
used in this study: GMR-Gal4 (Bloomington), UAS-miR-210 (Bejarano
et al, 2012), Sima KO/Tm3Sb (Bloomington #14640), Dgk RNAi
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(Bloomington #41944), GMR-p35 (Bloomington #5774), Df(1)BSC352
(Bloomington #24376), Apc RNAi (VDRC v51468), Vha55 RNAi (VDRC
v46553), Fasn1 RNAi (VDRC v29349) (Dietzl et al, 2007), UAS-Fasn1
(Garrido et al, 2015), and UAS-bmm-eGFP (Grönke et al, 2005).

Generation of transgenic fly lines

We used the CRISPR/Cas9 system according to previous publica-
tions (Port et al, 2014) to generate miR-210Δ, miR-210Δ GFP, and
miR-210ΔSeed mutants. To generate miR-210Δ and miR-210Δ GFP
mutants, first, transgenic flies expressing two guideRNAs upstream
and downstream of themiR-210 gene were generated (pCFD4-miR-
210). To generate miR-210Δ null mutants, pCFD4-miR-210 flies were
crossed with flies expressing Cas9 and progeny screened by PCR. To
generate miR-210Δ GFP reporter flies, pCFD4-miR-210 flies were
crossed with flies expressing Cas9, and their progeny was injected
with the pBS-miR-210Δ GFP donor template. PCR screening allowed
the identification of GFP knockin. To generate miR-210ΔSeed,
transgenic flies expressing one guideRNA targeting the functional
seed sequence of miR-210 was generated (pCFD3-miR-210). Next,
pCFD3-miR-210 flies were crossed with flies expressing Cas9 and
progeny screened by PCR.

UAS-Dgk flies were generated by cloning the Dgk cDNA into the
pUAST attb vector. pUAST attb Dgk was inserted into the fly genome by
the φC31 and attP/attB integration system (Bischof et al, 2007) using
the attP40 landing site. Primers used for cloning are shown in Table S1.

Lifespan analysis

Once-mated flies were transferred to vials (10-25 flies/vial). Three
times a week, the flies were transferred to fresh vials and deaths
scored. Standard SYA (sugar-yeas-agar) food was used for the
whole experiment.

Electroretinography

Fly photoreceptor function was assessed by ERG. The flies were
immobilized on a wax block lying on their back. A reference
electrode was inserted into the thorax and a second electrode into
the fly retina. The background light was reduced during the whole
experiment and the flies’ eye was stimulated with white light for 2 s.
Recordings were done using the Axoclamp 900A amplifier (Mo-
lecular Devices) and Digidata 1440A digitizer (Molecular Devices).
Notably, for white-eyedmutant wDah, we used wDah as control and
for red-eyed mutant rDah, flies were used as control, as the eye
colour is known to affect the shape and size of the ERG (Wu &Wong,
1977).

RNA extraction and cDNA synthesis

Total RNA including miRNAs was isolated with themiRNeasy Mini Kit
(QIAGEN) following the animal tissue protocol. RNA concentration
wasmeasured by the Qubit BR RNA assay (Thermo Fisher Scientific).
cDNA of mRNA was generated using the SuperScript III first-strand
synthesis kit (Invitrogen) using random hexamers. 600 ng of total
RNA was used for cDNA synthesis. cDNA synthesis of miRNAs was

performed using the TaqMan MicroRNA Reverse Transcription Kit
(Life Technologies) using specific primers for each small RNA.
300 ng of RNA was used for cDNA synthesis.

qRT-PCR

For qRT-PCR of mRNA, PowerUp SYBR Green Master Mix (Thermo
Fisher Scientific) or TaqMan Universal Real-Time PCR Master Mix
(Life Technologies) was used according to the manufacturer’s
manual. For qRT-PCR of miRNAs, TaqMan Universal Real-Time PCR
Master Mix (NoAmpEraseUNG; Life Technologies) and miRNA-
specific TaqMan assays were used. qRT-PCR was performed with the
7900HT real-time PCR system (Applied Biosystems) or with the
QuantStudio7 real-time PCR system (Thermo Fisher Scientific). Relative
expression (fold induction) was calculated using the ΔΔCT method, and
Rpl32 (for mRNAs) or snoRNA442 (for miRNAs) used as a normalization
control. Primers used for qRT-PCR are summarized in Table S2.

RNA sequencing of miRNAs

For miRNA sequencing, we dissected brains, thorax (thorax without
the gut), fat body (abdomen without the gut and ovaries), and the
gut (midgut without malphigian tubules). Small RNA was enriched
from 2 μg total RNA by gel electrophoresis using a Bio-Rad PROTEAN
II xi Cell with a 15% polyacrylamide/urea gel in 0.5× TBE buffer. The
samples were mixed with loading dye (2×; 89.75% formaldehyde,
10% TBE [5×], 0.05% sodium dodecyl sulfate, and 0.05% bromo-
phenol blue) and run at 300 V for 300 min. Small RNA between 19
and 26 bp was cut out and used for library preparation. Small
RNA sequencing libraries were generated using the Small RNA v1.5
Kit (Illumina), following the manufacturer’s protocol. RNA se-
quencing was performed with an Illumina HighSeq2500, single-end
reads and 100-bp read length at the Max Planck Genome Centre
Cologne (Germany). miRNA reads were identified using miRDeep
(Friedlander et al, 2008) and miRNAs with a minimum read number
of 10 were included for further analysis. The tissue-specificity score
was calculated as described previously (Landgraf et al, 2007) and
miRNAs with a tissue-specificity score >1 were defined as tissue
specific. The data have been deposited in NCBI’s Gene Expression
Omnibus (Edgar et al, 2002) and are accessible through (GEO:
GSE118004).

RNA sequencing of mRNA

Total RNA was extracted by Trizol (Thermo Fisher Scientific) fol-
lowing standard protocols. Poly (A) capture libraries were gener-
ated at the Max Planck Genome Centre Cologne (Germany). RNA
sequencing was performed with an Illumina HighSeq2500 and 25
million single-end reads/sample and 150-bp read length at the Max
Planck Genome Centre Cologne (Germany). Raw sequence reads
were quality-trimmed using Trim Galore! (v0.3.7) and aligned using
Tophat2 (Kim et al, 2013) (v2.0.14) against the Dm6 reference
genome. Multi-mapped reads were filtered using SAMtools (Li et al,
2009). Data visualization and analysis was performed using
SeqMonk, custom RStudio scripts, and the following Bioconductor
packages: Deseq2 (Love et al, 2014), topGO, ReactomePA, and org.
Dm.eg.db. For visualization of functional enrichment analysis
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results, we further used the CellPlot package. The data have been
deposited in NCBI’s Gene Expression Omnibus (Edgar et al, 2002)
and are accessible through (GEO: GSE118004).

Immunostainings of Drosophila tissues

Heads without the proboscis or manually dissected tissues were
dissected in PBS and fixed with 4% paraformaldehyde at 4°C for 2 h.
For cryosections, heads were incubated in 30% sucrose at 4°C
overnight, mounted in TissueTek, and cut into 10-μm thin sections.
Cryosections or manually dissected tissues were washed 6 × 30 min
in PBT (PBS with 0.5% Triton X-100) and subsequently blocked in
1 ml blocking buffer (PBT with 5% fetal bovine serum and 0.01%
sodium azide) for 60 min. The following dilutions of primary an-
tibodies were used for incubation over night at 4°C: 1:200 anti-
chaoptin (24B10; DSHB); 1:1,000 anti-GFP (A10262; Life Technologies).
Following washes in PBT, the tissues were incubated with a suitable
Alexa Fluor secondary antibody (Molecular Probes) overnight at
4°C. Following washes in PBT, the tissues were incubated in 50%
glycerol in PBS for 30 min and subsequently mounted on a mi-
croscope slide in VectaShield Antifade Mounting Medium with DAPI
(Vectorlabs). Imaging was done using a Leica SP5-X or Leica SP8-X
confocal microscope.

TEM

TEM was done according to (Johnson et al, 2002) with modifications.
In brief, fresh fly heads were cut in half and first fixed in 25%
glutaraldehyde in dH2O (Sigma-Aldrich) for 1 h at RT, then in 1%
osmium/2% glutaraldehyde in the dark on ice for 30 min, followed
by 1 h fixation in 2% glutaraldehyde in the dark on ice. After washing
and dehydration in EtOH, the heads were incubated 2 × 10 min in
100% EtOH, 2 × 10 min in acetone, and in 1:1 acetone:epon (Sigma-
Aldrich) overnight at 4°C. Eyes were mounted in epon (Sigma-
Aldrich) and polymerized at 65°C for 72 h. Ultrathin sections
(70 nm) were contrasted in 1.5% uranylacetate for 15 min, followed
by lead nitrate solution (1.3 M sodium citrate, 1 M lead nitrate, and
1 M sodium hydroxide) in a CO2-free environment. Images were
acquired using JEM 2100Plus TEM (JEOL).

During sample preparation for TEM, after dehydration, several
eyes were embedded in araldite, and 2.5-μm semi-thin sections
were taken with a Reichert OM U2 microtome, followed by toluidine
staining to obtain a better overview of the whole retina.

Luciferase assays

Human HEK293T cells were used for the luciferase-based miRNA
target validation experiments. Transfection of pMIR REPORT in-
cluding Fasn1 39-UTR attached to the firefly luciferase ORF, pRL
(Renilla luciferase), and miRVana miRNA mimics (dme-miR-210-3p
or Negative Control #1; Thermo Fisher Scientific) was achieved by
using Lipofectamine 3000 (Thermo Fisher Scientific) according to
the manufacturer’s manual. The Dual-Glo Luciferase Assay System
(Promega) was used to quantify firefly and Renilla luciferase.

Statistical analysis

Statistical analysis was performed using GraphPad Prism. Indi-
vidual statistical tests are mentioned in the respective figure
legends. One-way ANOVA was always followed by Tukey post hoc
test. Two-way ANOVA was always followed by Bonferroni post hoc
test. Lifespan assays were recorded using Excel, and survival was
analysed using log rank test. Significance was determined
according to the P-value: *P < 0.05, **P < 0.01, ***P < 0.001, and
****P < 0.0001.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201800149.
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