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mice. We observed an increased Treg proliferation in LNs of K14tg
controls, and further demonstrated that proliferating (red, Ki67")
Tregs (green, Foxp3™) (red arrows) in close proximity of LECs (white,
Lyve-17) (Fig 6C). In contrast, Treg proliferation in LEC proximity (red
arrows) was lower in LNs of K14tgp/V<° mice, demonstrating that the
increase of proliferation of Tregs interacting with LECs was de-
pendent on their expression of MHCII (Fig 6C). In contrast, we did
not observe any increase in the proliferation of non-Treg (Foxp3"©%)
CD4" T cells upon IFN-y stimulation, nor difference between K14tg
controls and K14tgpIV<° mice (not shown), suggesting that the Treg
compartment is specifically affected. Finally, to examine a potential
direct contribution of LECs as MHClI-restricted APCs in inducing
Treg proliferation, we repeated the above experiments in mice in
which MHCII expression was selectively abrogated in LECs. For that,
we used Prox-1-Cre®®"™ mice, expressing the Tamoxifen-inducible
Cre recombinase under the promoter Prox-1, which is selectively
expressed in adult LECs (Bazigou et al, 2011). Prox-1-Cre®®™ mice
were crossed with MHCII™ mice, allowing the selective deletion of
MHCII molecules in LECs upon Tamoxifen treatment (not shown).
Immunofluorescence analyses of LN sections demonstrated that
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Figure 4. K14tgpIV‘° mice exhibit enhanced T-cell
activation and impaired Treg frequencies in LNs upon
aging.

K14tgpIV<© (white) and K14tg control mice (black) were
analysed at 4 and 18 mo. (A) Frequencies of naive
(CD62L"'CD44°) and activated/memory (CD62L'°CD44™M)
CD4" and CD8" T cells. (B) Frequencies of PD-1", IFN-y,
and IL-17 producing cells among CD4" and/or CD8"

T cells. (C, D) Foxp3* Treg identification by flow
cytometry (CD4" CD25" Foxp3") (C) and IHC staining
(Foxp3*) (D) in lymph nodes of indicated mice. (A-D)
Data are representative of three experiments with 3-7
mice/group. *P < 0.05; **P < 0.01; ***P < 0.007; n.s., not
significant. Error bars depict mean + SEM. (E) CD4" CD25™
T cells (Treg) from total skin LNs of 18-mo-old
K14tgplV<® and K14tg mice were cultured (ratio 1:5, 13,
and 1.1) with proliferation dye-labeled naive CD4"
CD25™8 T cells. Labeled T-cell proliferation was
assessed by flow cytometry after 5 d of co-culture. Data
are representative of two experiments. Two-way Anova;
**p < 0.01.

the frequency of proliferating Tregs in contact with LECs 6 d after
IFN-y injection was significantly reduced in mice in which LECs do
not express MHCII molecules (Prox-1-CrefR™ MHCII") compared with
control mice (MHCII™) (Fig 6D). Altogether, our results demonstrate
that IFN-y-mediated MHCII up-regulation by LNSCs promotes Treg
proliferation, with a major contribution of LECs.

Discussion

Ourresults provide the first evidence foran in vivo role of LNSCs in
impacting peripheral T-cell tolerance as MHClI-restricted APCs.
We have recently published that subsets of murine LNSCs present
MHClI-peptide complexes acquired from DCs to induce CD4" T-cell
dysfunction (Dubrot et al, 2014). Here, we further show that LNSCs
inhibit autoreactive T-cell responses by directly presenting Ags
through endogenous MHCII molecules. A recent study suggested
that, although LECs express surface MHCII molecules, they
cannot presenta model Agto CD4" T cells presumably because of
the lack of expression of H2-M in steady state, preventing the
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loading of endogenous antigenic peptides onto MHCII molecules
(Rouhani et al, 2015). However, we show that LECs, BECs, and FRCs
that express the IFN-y=inducible-CIITA plV, require IFN-y to up-
regulate H-2M molecules, as they do for MHCII expression, these
two genes being co-regulated by CIITA (Reith & Mach, 2001). In
addition, LNSCs were described to express considerable amounts
of invariant chain (li) and cathepsin L (Rouhani et al, 2015), and
therefore seem well equipped for the presentation of antigenic
peptides through MHCII in situations involving the presence
of IFN-y.

Genetic abrogation of MHCII in LNSCs in vivo leads to impaired
regulatory T-cell frequencies and in vitro functions, enhanced
effector T cell differentiation LNs and peripheral tissue infiltration,
and subsequent development of T cell-mediated autoimmunity in
elderly mice. Indeed, mice lacking MHCII in LNSCs exhibit spon-
taneous signs of autoimmunity in elderly mice. LNSCs express a
broad range of self-Ags. Therefore, our hypothesis is that abro-
gation of MHCII in these cells will lead to an inflation of polyclonal
memory/effector T cells. In agreement, no difference was observed
in the frequency of several TCR VB chains expressed by CD4" and
CD8" T cells isolated from LNs of old control and knockout mice (not
shown), suggesting that there is no restriction of T-cell clonality in
mice lacking MHCII in LNSCs. Importantly, in this model there is no
pre-existing early CD4" T-cell bias, nor Treg function impairment.
K14tgpIVK© young adult mice do not present any abnormality, ex-
cluding the possibility of a defect from thymic selection. In addition,
T cells from 6- to 10-wk-old K14tgpIV<® mice were recently ex-
tensively characterized, and normal distribution of CD4" naive,
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Figure 5. T cells isolated from mice lacking MHCII
expression in LNSCs induce autoimmunity upon
transfer into immunodeficient mice.

(A-E) T cells isolated from LNs and spleen of 18-mo-old
K14tgpIV<© (white) and control mice (black) were
adoptively transferred into Rag2™/~ recipient mice that
were analysed 4 mo later. (A) Mouse weight. Data are
pooled from four mice and representative of two
experiments. (B) Sections of small intestines from
recipient Rag2”/~ mice were stained with antibodies
against CD45 (green), CD3 (red), and with DAPI (blue).
Pictures show representative tissue sections. Graphs
represent the quantification of CD3" T cells/area and
are pooled from 12 tissue sections from three individual
mice/group. (C-E) Flow cytometry dot plots showing
the frequency of CD62L"CD44° CD4" and CD8* T cells
(C), the frequency of CD4" T cell-producing IFN-y or IL-17
and the frequency of CD8" T cell-producing IFN-y in LNs
(D) and Treg frequencies (E) in LNs of transferred Rag2™/
" recipient mice. Data are representative of two
experiments with 2-4 mice/group each. (C-E) *P < 0.05;
**P < 0.01; ***P < 0.001; n.s. (A, B, D) unpaired t test, (C, E)
two-way Anova.

18 mo

effector, and Foxp3" T-cell subsets were observed in the thymus,
spleen, and peripheral LNs (Thelemann et al, 2014).

In contrast to a recent study suggesting an activity of K14 pro-
moter in LNSCs (Baptista et al, 2014), we did not observe any K14
mMRNA expression in LECs, BECs, and FRCs (Fig 2B). Consistently,
MHCII expression was similar in LNSCs isolated from pIV*° and
K14tgpIV<® mice (Fig 2E), confirming that the K14 ciita transgene
does not promote any MHCII expression in LNSCs. However, be-
cause peripheral non-hematopoietic tissue-resident cells can up-
regulate MHCII molecules in an IFN-y-inducible plV-dependent
manner (Duraes et al, 2013), this mouse model does not repre-
sent per se a valid mouse model to study the specific role of
endogenous MHCII expression by LNSCs in shaping peripheral CD4"
T-cell responses. For instance, intestinal epithelial cells (IECs),
hepatocytes and liver sinusoidal endothelial cells, pancreatic
B cells, or astrocytes were postulated to be capable of MHCII-
mediated Ag presentation, although very little in vivo data are
available on the potential impact on peripheral CD4" T-cell re-
sponses (reviewed in Duraes et al [2013]). Recently, using the mouse
model we are presently exploiting, two studies have highlighted
opposite roles for MHCII expression in distinct target tissues.
First, IFN-y-mediated MHCII up-regulation by IECs exerts anti-
inflammatory effects and protect against colitis (Thelemann
et al, 2014). In contrast, in the context of experimental autoim-
mune myocarditis, elevated IFN-y-inducible cardiac endothelial
MHCII expression exacerbates the disease (Thelemann et al, 2016).
Together, these findings provide evidence of a critical role of plV-
mediated non-hematopoietic MHCII expression in peripheral tissues
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upon inflammation, the impact on T-cell responses being largely
dependent on the target organ. Here, we add a distinct role of LN-
resident stromal populations in shaping CD4" T-cell responses,
providing support to Treg homeostasis and maintaining peripheral
tolerance. We cannot totally exclude a role for a lack of MHCII
expression by cells in peripheral tissue on local T-cell reactivation
in K14tgpIV<© mice. Indeed, it is possible that T cells infiltrating
peripheral organs are maintained in a tolerogenic state by local
MHCII" cells, and that this phenomenon is abrogated in our mouse
model. However, it is unlikely, for several reasons. First, a similar
phenotype was obtained after adoptive transfer of T cells from LN
of K14tgpIVk® mice into Rag2™/~ with competent MHCII peripheral
tissues. Importantly, T-cell compartments in the recipient Rag2™/~
mice recapitulated the effects observed in the donor transgenic
mice indicating a contribution of LNSCs to peripheral T-cell al-
terations. Second, although a contribution of MHCII expression by
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tissue-resident cells has been described before, it was always in
inflammatory settings, in which these cells indeed up-regulate
MHCII in contrast to our stud which was performed in the steady
state (Duraes et al, 2013), minimizing their possible contribu-
tion as MHClI-restricted Ag presenting cells in the absence of
model-induced inflammation. Finally, LN-resident Tregs exhibit
impaired proliferation in LNs not only in K74tgp/V<°, but also in
Prox-1-Cre®R"2 MHCII" mice, supporting a pro-tolerogenic role for
MHClI-restricted Ag presentation by LNSCs, in particular LECs, in
dampening T-cell autoimmune reactions.

We have previously shown that endogenous MHCII expression by
LECs, BECs, and FRCs was significantly increased in WT mice compared
to IFN-y receptor-deficient mice (Dubrot et al, 2014), demonstrating
that the presence of low levels of IFN-y in naive mice drives plV-
mediated MHCII endogenous expression in steady-state LNSCs. This
was confirmed by reduced MHCII expression by LNSCs in steady-state
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LNs from K14tgpIV<° compared with control mice. Therefore, basal
(and presumably variable) levels of circulating steady-state IFN-y
promote endogenous MHCII expression by LNSCs, and confer them
the ability to function as competent MHCII-mediated APCs. Increased
inflammatory status over time might be due to the accumulation of
punctual and mild infectious processes or altered gut microbiotic
composition upon aging (Claesson et al, 2012).

Last, we provide evidence for a direct effect of MHClI-restricted Ag
presentation by LECs in promoting Treg proliferation. Genetic selective
abrogation of MHCII expression by LECs in mice results, similarly to
what was observed in K14tgpIV° mice, in impaired proliferation of Treg
in contact with LECs. Therefore, among the LNSC subsets, LECs seems
to be the main contributors in inducing Treg proliferation. Distinct sets
of PTA expression, together with differential levels of expression of co-
inhibitory molecules, such as PDL-1 (Tewalt et al, 2012), by LNSC
populations might give rise to distinct impacts on T-cell responses,
such as T-cell apoptosis, T-cell anergy, or Treg induction. Elevated PDL-1
expression by LECs compared with BECs and FRCs might explain a role
for those cells in impacting Tregs, which express high levels of PD-1.
Although we did not elucidate the molecular mechanisms, a se-
lective effect on Tregs, which mostly express a self-reactive TCR,
could result from the ability of LECs to present endogenously
expressed PTAs. One explanation could be the use of the autophagy
pathway by LECs to present endogenous PTAs through MHCII mole-
cules. This hypothesis would be in accordance with previous results
obtained in the thymic epithelium (Nedjic et al, 2008; Aichinger et al,
2013). Future experiments in the laboratory will use mice genetically
deficient for autophagy to firmly demonstrate the implication of this
pathway in the ability of the different LNSC subsets to present PTAs
through MHCII molecules and to alter the Treg compartment. Our
experiments do not rule out another possible mechanism of action by
which MHCII expression in LNSC may support T-cell inactivation in an
Ag-independent fashion. MHCII is a natural ligand for the molecule
lymphocyte activation gene 3 (LAG-3), expressed on activated T cells
and can be induced by IFN-y stimulation. This immune checkpoint has
an inhibitory role for LAG-3 in controlling both CD4 and CD8 T-cell
proliferation in vitro and in vivo (Workman et al, 2004; Grosso et al,
2007). In addition, LAG-3 expression on Tregs has been shown to be
important for their suppressive function (Grosso et al, 2007; Okamura
et al, 2009). Moreover, the co-expression of LAG-3 with the inhibitory
receptor PD-1 on exhausted T cells or Tregs correlates with a greater
state of effector T-cell exhaustion and the suppressive function of
Tregs. The relative contribution of both Ag-dependent and/or Ag-
independent pathways remains to be addressed.

In conclusion, our work identifies novel in vivo functions of MHCII
expression by LNSCs in the maintenance of peripheral T-cell tol-
erance by inhibiting autoreactive T cells. We also define the LECs as
important MHCII expressing cells supporting Treg homeostasis.

Materials and Methods

Mice and treatments

C57BL/6 WT mice were purchased from Charles River. plv™/~
(Waldburger et al, 2003), Ciita™’~ and K14tgpIVX° (Laufer et al, 1996),
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and Rag2™’~ (Jackson Laboratories) Prox-1-CrefR™ MHCII™ mice have
been previously described (Bazigou et al, 2011). To selectively
abrogate MHCII expression in LECs, Prox-1-Cre®R™2 mHCII™ (and
MHCHY " control) mice were injected with tamoxifen (i.p) twice a day
for four consecutive days (2 mg/mice/d). 2 wk after the last in-
jection, mice were treated with IFN-y and FTY720 as described
below. These mouse strains are on a C57BL/6 background and were
housed and maintained under SPF conditions at the Geneva
Medical School animal facility and under EOPS conditions at
Charles River, France. All animal husbandry and experiments were
approved by and performed in accordance with guidelines from the
Animal Research Committee of the University of Geneva. Geno-
typing was carried out by using PCR on ear biopsies with the Phire
Tissue Direct PCR Master Mix (F170L; Thermo Fisher Scientific). When
indicated, IFN-y (Peprotech) was injected subcutaneously (both
flanks and neck, 1 ug/50 ul), and FTY720 (Sigma-Aldrich) (20 ug) was
injected every day for 6 d before the experiment. Mice from each
group were randomized before treatments.

LNSC and cell tissue isolation

LNSCs were obtained as previously described (Dubrot et al, 2014). In
brief, total skin or skin-draining LNs from individual or 10-15 pooled
mice were cut into small pieces and digested in RPMI containing
1 mg/ml collagenase IV (Worthington Biochemical Corporation),
40 pg/ml DNase | (Roche), and 2% FBS. Undigested cells were
further digested with 1 mg/ml collagenase d, and 40 ug/ml DNase |
(Roche). The reaction was stopped by addition of 5 mM EDTA and
10% BSA. Samples were further disaggregated through a 70-um cell
strainer and blocked with anti-CD16/32 antibody. Single-cell sus-
pensions were negatively selected using CD45 microbeads and a
magnetic bead column separation (Miltenyi Biotec).

Cells from LN, the spleen, the SC, and SGs were isolated by
digesting organ fragments with an enzymatic mix containing col-
lagenase D (1 ug/ml) and DNAse | (10 pug/ml) (Roche) in HBSS [14].
For SC and SG, single-cell suspensions were further centrifuged
through a discontinuous 30:70% percoll (Invitrogen) gradient. T cells
were further analysed by flow cytometry.

Small intestines were excised and transferred into PBS 2% FCS.
Peyer’'s patches and adipose tissue were carefully removed. The
small intestines were cut longitudinally and cleaned of faecal
content. The small intestines were next incubated in RPMI con-
taining 10% FCS, 2 mM EDTA, and 1 mM DTT for 30 min at 37°Cin a
shaking incubator to remove epithelial cells, the supernatant being
discarded. The remaining tissue was digested twice in RPMI con-
taining 1 mg/ml of collagenase D (Roche) for 30 min at 37°C in a
shaking incubator. Cells were recovered from the supernatant and
filtered through a 70-um cell strainer.

Antibodies, flow cytometry, and cell sorting

Anti-gp38 (8.1.1), anti-CD31 (390), anti-CD11c (N418), anti-CD44
(IM7), and anti-IAb (AF6.120.1) mAbs were from BiolLegend. Anti-
CD45 (30F11), anti-CD16/32 FcyRINl (2.4G2), anti-I-A9/I-E¢ (2G9),
anti-IFNyR (GR20), and H2-M (2E5A) were from BD. Anti-CD19 (1D3),
anti-CD8 (53-6.7), anti-CD4 (GK1.5), anti-CD11b (M1/70), anti-CD62L
(MEL-14), anti-PDCA-1 (eBi0927), anti-PD-1 (J43), anti-IFN-y (XMG1.2),
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anti-IL-17 (eBio17B7), and anti-Foxp3 (FJK-16s) were from eBio-
science. Anti-EpCAM (caa7-9G8) and anti-Ly5.1 (6C3) were from
Miltenyi Biotec.

For LNSC flow cytometry sorting, enriched CD45"°® cells were
stained with mAbs against CD45, gp38, and CD31. In some experi-
ments, cells were also stained with mAbs against MHCII or isotype
control as indicated. For cTEC and mTEC sorting, enriched CD45"¢
cells were stained with mAbs against CD45, EpCAM, and Ly5.1.

Intracellular cytokine stainings were carried out with the Cytofix/
Cytoperm kit (BD) for IFN-y and IL-17 staining. Foxp3 staining was
performed with the eBioscience kit, according to manufacturer's
instructions. For IFN-y and IL-17 staining, LN cells were cultured in
RPMI containing 10% heat-inactivated fetal bovine serum, 50 mM
2-mercaptoethanol, 100 mM sodium pyruvate, and 100 uM penicillin/
streptomycin at 37°C and 5% CO,. Cells were stimulated for 18 h with
PMA/ionomycin and Golgi stop solution (BD) was added during the
last 4 h of culture before the staining.

Cells were either acquired on a Gallios or sorted using a
MoFlowAstrios (Beckman Coulter), and analysed using FlowJo (Tree
Star) or Kaluza softwares.

Immunofluorescence microscopy

Mice were transcardiacally perfused with PBS, and intestines were
fixed in paraformaldehyde before inclusion in paraffin. Preserved
organs were cut into 7-um-thick sections and deparaffinised in
xylene-ethanol. Ag retrieval was performed in citrate buffer. Sec-
tions were then stained using labelled antibodies against CD45 (30-
F11) and CD3 (17A2) and DAPI (Sigma-Aldrich) counter-staining.
Sections were mounted with Mowiol fluorescent mounting me-
dium (EMD). Images were acquired with a confocal microscope (LSM
700; Carl Zeiss Inc. and SP5; Leica).

Skin LNs from untreated mice or mice treated with IFN-y and
FTY720 were frozen in OCT medium. 10-um-thick sections were cut
and fixed with paraformaldehyde 4% for 20 min. After washing and
permeabilization, the sections were stained overnight at 4°C using
a rabbit anti-Lyve-1 antibody (Reliatech GmbH). Secondary staining
was performed using a Alexafluor546-labelled donkey anti-rabbit
antibody, Alexafluor488-labelled anti-Foxp3 (150D) antibodies and
eF660-Ki67 (SolA15), for 2 h at room temperature. After DAPI (Sigma-
Aldrich) staining, sections were mounted with Mowiol fluorescent
mounting medium (EMD). Images were acquired with a confocal
microscope (LSM 700; Carl Zeiss Inc. and SP5; Leica). Tregs in
“close proximity” (<5 um) of LECs were quantified as proliferating
(Ki67"Foxp3") or non-proliferating (Foxp3") cells, and the ratio of
proliferating Tregs was calculated. At least 20 images/condition
were quantified.

Treg suppression assay

In vitro Treg suppressive assays were performed as follows: CD4"
€D25M T cells (Treg) were purified by flow cytometry from total skin
LNs of 18-mo-old K14tgpIV<C and K14tg control mice and cultured at
the indicated ratio with 2 x 10° proliferation dye-labeled naive CD4"
CD25"°¢ T cells in the presence of bone marrow-derived DC and
anti-CD3 antibodies. Labeled T-cell proliferation was assessed by
flow cytometry after 5 d of co-culture.

MHC-II in LNSCs prevent autoimmunity Dubrot et al.

T-cell adoptive transfer into Rag2~/~ recipients

LN and spleen of donor mice were harvested, and T cells were
negatively selected from the cell suspension using a PAN Tisolation
kit (Mylteniy biotec) according to the manufacturer’s instructions.
Purity generally exceeded 95%. 2-5 = 10° T cells were injected in-
travenously into Rag2”/~ mice. Recipient mice were randomized
before transfer and co-housed during the experiment.

RNA isolation and quantitative RT-PCR

Total RNA was isolated using Tri-Reagent (Ambien) from sorted
cells. cDNA was synthesized using random hexamers and M-MLV
reverse transcriptase (Promega). PCRs were performed with the
CFX Connect real-time PCR detection system and iQ SYBR green
super mix (Bio-Rad Laboratories). The results were normalized
with GAPDH or 60S ribosomal protein L32 mRNA expression and
quantified with a standard curve generated with serial dilutions of
a reference cDNA preparation. Primer sequences: I-Ab forward, 5'-
CTG TGG TGG TGG TGA TGG T-3" and reverse, 5'-CGT TGG TGA AGT AGC
ACT CG-3'. H2-Ma forward, 5'-CTCGAAGCATCTACACCAGTG-3’ and re-
verse, 5'-TCCGAGAGCCCTATGTTGGG-3'. K14 orward, 5'-AGG GAG AGG
ACG CCC ACC TT-3" and reverse, 5'- CCT TGG TGC GGA TCT GGC GG-3’

Lysate preparation and immunoblotting

Tissues were homogenized in T-PER tissue protein extraction re-
agent (Thermo Fisher Scientific) supplemented with a cocktail of
protease inhibitors (Complete, Roche). Protein extracts were in-
cubated at 95°C for 5 min with of 4x SDS-PAGE-loading buffer
(250 mmol Tris—HCl at pH = 6.8, 40% glycerol, 8% SDS, 0.57 mol
B-mercaptoethanol, and 0.12% bromophenol blue). Equal amounts
of protein were run on 12% SDS-PAGE gels and transferred onto a
polyvinylidene difluoride membrane (Hybond-P; Amersham Bio-
sciences). Sera from K14tgpIV<© or control mice were visualized with
HRP-conjugated goat anti-mouse 1gG (Bio-Rad Laboratories) and
the ECL WesternBright Sirius (advansta).

Statistical analysis

Statistical significance was assessed by the two-tailed unpaired
t test or two-way Anova, and Log-rank test using Prism software
(GraphPad).
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