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Absence of MHC-II expression by lymph node stromal cells
results in autoimmunity
Juan Dubrot1,*, Fernanda V Duraes1,*, Guillaume Harlé1,*, Anjalie Schlaeppi1 , Dale Brighouse1, Natacha Madelon1,2,
Christine Göpfert3 , Nadine Stokar-Regenscheit3, Hans Acha-Orbea4, Walter Reith1, Monique Gannagé1,2,
Stephanie Hugues1

How lymph node stromal cells (LNSCs) shape peripheral T-cell
responses remains unclear. We have previously demonstrated
that murine LNSCs, lymphatic endothelial cells (LECs), blood
endothelial cells (BECs), and fibroblastic reticular cells (FRCs) use
the IFN-γ–inducible promoter IV (pIV) of the MHC class II (MHCII)
transactivator CIITA to express MHCII. Here, we show that aging
mice (>1 yr old) in which MHCII is abrogated in LNSCs by the
selective deletion of pIV exhibit a significant T-cell dysregulation
in LNs, including defective Treg and increased effector CD4+ and
CD8+ T-cell frequencies, resulting in enhanced peripheral organ
T-cell infiltration and autoantibody production. The proliferation
of LN-Tregs interacting with LECs increases following MHCII up-
regulation by LECs upon aging or after exposure to IFN-γ, this
effect being abolished in mice in which LECs lack MHCII. Overall,
our work underpins the importance of LNSCs, particularly LECs, in
supporting Tregs and T-cell tolerance.
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Introduction

T-cell precursors undergo thymic negative selection, which ensures
the elimination of developing T cells expressing TCR-recognizing self-
Agswith excessive affinity. However, some autoreactive T cells escape
this process of clonal deletion and exit the thymus to populate
secondary lymphoid organs (SLOs). Therefore, additional mecha-
nisms of T-cell tolerance are required in the periphery to avoid the
development of autoimmunity. Among them, resting DCs, which
constantly sample self-Ags in peripheral tissues and reach the
draining LNs through the afferent lymph, present self-Ag–derived
peptides to naive T cells. In the absence of danger, this phenomenon

leads to clonal deletion, or anergy of autoreactive T cells (Steinman
et al, 2003; Mueller, 2010). Alternatively, Tregs, by exhibiting sup-
pressive immunoregulatory functions, can inhibit autoreactive
T cells. Different subsets of Tregs have been described so far.
Natural Tregs bear an autoreactive TCR, are induced in the thymus,
and express the transcription factor Foxp3. Peripheral-induced
Tregs can express Foxp3 or not, and differentiate in SLOs (Chen
et al, 2003; Swee et al, 2009; Wirnsberger et al, 2011). Preservation of
Treg function and biology is crucial for peripheral tolerance.

Lymph node stromal cells (LNSCs) have recently been promoted
to the rank of new modulators of T-cell responses. After being
considered for years as simple scaffolding, forming routes, and
proper environment for Ag-lymphocyte encountering, we recently
learned that they also impact both DC and T-cell functions. Lym-
phatic endothelial cells (LECs) promote DC entry into and T-cell
egress from LNs (Sixt et al, 2005; Pham et al, 2010; Braun et al, 2011),
whereas CCL19/CCL21–producing fibroblastic reticular cells (FRCs)
control immune cells entry and proper localization into LNs (Link
et al, 2007; Tomei et al, 2009). Blood endothelial cells (BECs) control
T-cell homing to LNs (Bajenoff et al, 2003). In addition, LECs and
FRCs are the major source of IL-7 in LNs, ensuring T-cell homeo-
stasis. In inflammatory situations, however, LECs and FRCs produce
nitric oxide to constrict T-cell expansion (Khan et al, 2011; Lukacs-
Kornek et al, 2011; Siegert et al, 2011), whereas LECs further impair DC
maturation in a contact-dependent fashion (Podgrabinska et al,
2009). In the context of peripheral tolerance, LNSCs, and in par-
ticular LECs and FRCs, ectopically express a large range of pe-
ripheral tissue Ags (PTAs), and further present PTA-derived
peptides through MHC class I (MHCI) molecules to induce self-
reactive CD8+ T-cell deletion (Cohen et al, 2010; Fletcher et al, 2010,
2011; Tewalt et al, 2012). We have previously demonstrated that, in
addition to inducing CD4+ T-cell dysfunction by presenting peptide-
MHC class II (MHCII) complexes acquired from DCs, LECs, BECs, and
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FRCs endogenously express MHCII molecules (Dubrot et al, 2014).
Central tolerance of self-reactive CD4+ T cells is partially mediated
by thymic epithelial cells (TECs), in which MHCII molecules are
loaded with peptides derived either from phagocytosis and pro-
cessing of extracellular Ags (Stern et al, 2006), or from autophagy
and endocytosis of intracellular Ags (Adamopoulou et al, 2013;
Aichinger et al, 2013). Whether these pathways can be involved in
MHCII-restricted Ag presentation by LNSCs, and impact peripheral
self-reactive T-cell responses, is currently unknown.

Here, we have used genetically modified mice in which MHCII
expression by non-hematopoietic cells is abrogated. Upon aging,
and compared with their control counterparts, these mice exhibit
an enhancement of spontaneous autoimmune processes, with
enhanced T-cell activation in SLOs and effector T-cell infiltration in
peripheral tissues, as well as the production of autoantibodies. In
contrast, the Treg compartment is significantly impaired in SLOs.
Furthermore, Rag2−/− mice transferred with T cell isolated from LN
of aging MHCII-deficient LNSC mice displayed similar immuno-
logical and clinical perturbations compared with recipient injected
with age-matched control T cells, suggesting a direct link between
MHCII expressed by LNSCs and the appearance of T cell–mediated
signs of autoimmunity. Accordingly, upon aging or IFN-γ treatment,
LECs up-regulate MHCII molecules, and interact with Treg to pro-
mote their proliferation. This phenotype is abolished in mice de-
ficient for MHCII expression in LECs. Altogether, we prove that MHCII
expression by LNSCs have a manifest impact in peripheral toler-
ance. Notably, LECs support self-Ag–specific T cell peripheral tol-
erance by promoting Treg proliferation through MHCII-restricted Ag
presentation.

Results

Expression of MHCII by LNSCs

Our previous work has demonstrated that LNSCs impact CD4+ T-cell
biology by presenting peptide-MHCII complexes acquired from
DCs (Dubrot et al, 2014). Although these findings revealed a novel
function of the lymphoid stroma as casual APC, whether endoge-
nous MHCII Ag presentation by LNSCs can also impact T-cell
responses remains to be determined. To abrogate cell-intrinsic pIV-
mediated MHCII expression by LNSCs, we have used mice deficient
for the IFN-γ–inducible pIV of CIITA (pIVKO) (Waldburger et al, 2001).
As expected, steady-state MHCII expression by LECs, BECs, and FRCs
was only partially abrogated in pIVKO mice compared with control
mice (Fig 1A). Indeed, we recently described that MHCII expression
by LNSCs partially results from a combination of both DC-acquired
and CIITA promoter IV (pIV)–driven, endogenously expressed, MHCII
molecules (Dubrot et al, 2014). DCs use the pI promoter of CIITA, and
therefore, MHCII transfer to LNSCs is not abrogated following pIV
deletion (Dubrot et al, 2014). However, pIV deletion led to the
abrogation of endogenous MHCII expression by LECs, BECs, and
FRCs. We confirmed this by analysing a second CTIIA-regulated
gene, H2-M, the oligomorphic MHCII molecule involved in MHCII
Ag loading. Ex vivo LECs, BECs, and FRCs express low H2-M and
MHCII levels in the steady state, but substantially up-regulate

H2-M and I-Ab molecules at both mRNA (Fig 1B) and protein (Fig
1C) levels after IFN-γ treatment (s.c. injection), suggesting a
potential role for MHCII-restricted Ag presentation by LNSCs
during inflammation. Both steady state and IFN-γ–inducible
endogenous MHCII expressions were abrogated in pIVKO mice
(Fig 1B and C).

Abrogation of endogenous MHCII in LNSCs

MHCII expression in cortical TECs (cTECs) depends on pIV. Because
of the absence of MHCII expression by cTECs, pIVKO mice conse-
quently exhibit a defect in CD4+ T-cell thymic positive selection, and
lack peripheral CD4+ T cells (Waldburger et al, 2003). Therefore,
pIVKO mice were crossed with transgenic mice expressing CIITA
under the keratin 14 (K14) promoter, which is active in cTECs (Laufer
et al, 1996), but not in LNSCs (Fig 2A and B). MHCII expression by
cTECs was efficiently restored in K14 CIITA tg x Ciita pIV−/−

(referred as K14tgpIVKO mice) mice compared with pIVKO mice,
and to a similar extent compared with cTECs isolated from WT
or control (K14 Ciita tg × Ciita pIV+/−, referred to as K14tg) mice
(Fig 2C). As a consequence and as described before (Irla et al,
2008; Thelemann et al, 2014, 2016), K14tgpIVKO mice exhibit
normal CD4+ T-cell frequencies in SLOs (Fig 2D). We did not observe
any significant expression of the K14 transgene in LNSCs purified
from these mice (Fig 2B). However, to avoid any off-target effect of
the K14 Ciita transgene in LNSCs or other cells, K14tgpIVKOmice were
always compared with K14tg controls in all experiments. Impor-
tantly, MHCII expression by mTECs is not altered in pIVKO and
K14tgpIVKO mice (Fig 2C), for the, respective, following reasons: first,
mTECs express the pIII of CIITA in addition to pIV (Irla et al, 2008),
and second, the K14 promoter is not active in terminally differ-
entiated mTECs (Sukseree et al, 2012). Therefore, negative CD4+

T-cell selection is unaffected in K14tgpIVKO mice. Accordingly, we
have previously demonstrated that CD4+ thymocytes and periph-
eral CD4+ T cells that developed in K14tgpIVKO mice (6–10 wk-old)
were indistinguishable fromWTwith respect to cell numbers and TCR
V-β repertoire (Irla et al, 2008).

IFN-γ–induced endogenous and pIV-dependent MHCII up-
regulation, which was efficiently abolished in LECs, BECs, and
FRCs from K14tgpIVKO mice compared with control mice (Fig 2E).
However, the expression of MHCII by other LN cells, i.e., different DC
subtypes, B cells, or monocytes/macrophages, which rely on pI
and/or pIII of CIITA (Waldburger et al, 2001), was found unaffected in
K14tgpIVKO mice (Fig 2F). Altogether, our data demonstrate that
endogenous MHCII expression is efficiently abrogated in LNSCs of
K14tgpIVKO mice.

Mice deficient for MHCII expression in LNSCs develop
spontaneous signs of T cell–mediated autoimmunity

LNSCs have been so far described to function as tolerogenic Ag-
presenting cells. Therefore, we tested whether the absence if MHCII
expression by LNSCs would result in self-reactive T-cell tolerance
breakdown and lead to immunopathology. Analysis of peripheral
organs showed that the percentage of CD4+ and CD8+ T cells in-
filtrating the spinal cord (SC) and salivary glands (SGs) were
markedly increased in K14tgpIVKO compared with K14tg control
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elderly (18 mo-old) mice (Fig 3A). No difference was observed in
4-mo-old mice (Fig 3A). In addition, intestines of 18-mo-old
K14tgpIVKO exhibit increased frequencies of CD4+ T cells produc-
ing the proinflammatory cytokine IFN-γ compared with K14tg
controls (Fig 3B). Other peripheral organs, such as the liver and the
lungs, also exhibit a tendency of enhanced infiltrating CD4+ and
CD8+ T cell numbers in 18-mo-old K14tgpIVKO mice, although not
significant (not shown). Therefore, peripheral tissue T-cell infil-
tration was increased in a variety of non-lymphoid organs in elderly
K14tgpIVKO mice. In agreement with a possible autoimmune syn-
drome, serum obtained from 18-mo-old K14tgpIVKO mice contained
a broader spectrum of autoantibodies with enhanced reactivity to
proteins from several tissues compared with K14tg control mice
(Fig 3C), indicating an exacerbated development of systemic au-
toimmunity upon aging. Altogether, our data provide evidence that
MHCII molecule expression by non-hematopoietic cells contribute

to peripheral T-cell tolerance by providing a brake in the devel-
opment of spontaneous signs of T cell–mediated autoimmune
inflammation in peripheral tissues of elderly mice.

MHCII abrogation in LNSCs enhances T-cell activation and impairs
the Treg compartment in LNs

We next sought to determine whether exacerbated signs of T cell–
mediated autoimmune inflammation in peripheral tissues of elderly
K14tgpIVKO mice result from enhanced T-cell activation in SLOs.
Analysis of CD4+ and CD8+ T cells in LN did not show any differences
between 4-mo-old K14tgpIVKO and K14tg mice (Fig 4A). However, in
aging mice (18 mo), we noticed a significant enhanced T-cell acti-
vation, with decreased frequencies of naive (CD62LhiCD44lo) and
increased frequencies of activated (CD62LloCD44hi) CD4+ and CD8+

T cells in LNs of K14tgpIVKO compared with K14tg mice (Fig 4A). In

Figure 1. LNSCs upte MHCII and MHCII-associated molecules in response to IFN-γ.
(A) Flow cytometry and plotted histograms showing MHCII expression (MFI) by LECs, BECs, and FRCs from LN of indicated naive mice. MHCII coming from DC (blue arrow)-
or endogenous (red arrow)-origin, is indicated. (B) WT or pIV CIITA–deficient mice (pIVKO) mice were injected subcutaneously with PBS or 1 μg of IFN-γ; LNSCs were
sorted by flow cytometry 24 h later. Histograms represent I-Aβ (upper panel) and H-2Mα (lower panel) relative mRNA expression by LECs, BECs, and FRCs from indicated
mice, measured by qPCR and normalized to GAPDH. Data are representative of two experiments with 10 mice pooled/group. (C) LNSCs and DCs from draining LNs
were analysed 24 h after IFN-γ injection (as previously) by flow cytometry. Dot plots represent the expression of MHCII and H-2M by LECs, BECs, FRCs, and DCs from indicated
mice. Frequency of double positive fractions are highlighted in red. Data are representative of two experiments with three mice/group.
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addition, the frequency of effector CD4+ and CD8+ T cells expressing
PD-1, and the frequency of CD4+ and CD8+ T cells producing IFN-γ,
were enhanced in skin LNs from K14tgpIVKO compared with K14tg
mice (Fig 4B). Because both CD4+ and CD8+ T-cell phenotypes and
effector functions were affected, we postulated that an active
mechanism of T-cell inhibition might have been lost in LNs of
K14tgpIVKO mice upon aging. Accordingly, the frequency of Foxp3+

Tregs was significantly impaired (two-fold reduction) in LNs of aging
K14tgpIVKO compared with K14tg controlmice (Fig 4C). Foxp3+ staining
on LN sections confirmed this phenotype (Fig 4D). In contrast, no
difference in Treg frequencies was observed in 4-mo-old mice (Fig
4C). With Treg frequencies being reduced in aging K14tgpIVKO com-
pared with K14tg controls, we next wondered whether this cellular
population exhibited any phenotypic or functional alteration. We did
not observe any alteration in the expression of several typical
markers characterizing the Treg compartment, such as PD-1, CD44,
CD25, or Foxp3 (not shown). In contrast, compared with control mice,
LN Treg isolated from aging K14tgpIVKO mice exhibited an impaired
ability to suppress the proliferation of naive CD4+ T cells in vitro at the
Treg:Tnaive ratio of 1:5 (Fig 4E). The fact that no difference was ob-
served when increased Treg numbers were used suggests that im-
paired Treg functions in knockout mice can be overcome with high
Treg numbers.

So far, we have accumulated convincing data that upon aging,
K14tgpIVKO exhibits signs of spontaneous autoimmune defects.
Organ-infiltrating T cells, and also the production of autoantibodies
are increased, suggesting that the lack of MHCII expression by
LNSCs in LNs of knockout elderly is likely to be responsible for this
phenotype. However, these observations might also result from the
lack of pIV of CIITA in the target organs, as other non-hematopoietic
cells from peripheral tissues may up-regulate MHCII and contribute
to this phenotype. Indeed, peripheral tissue-resident cells can up-
regulate MHCII molecules in an IFN-γ–inducible pIV-dependent
pathway and, by re-stimulating infiltrating T cells, possibly influ-
ence the outcome of T-cell responses (Duraes et al, 2013). Therefore,
to determine whether enhanced signs of spontaneous autoim-
munity in aging K14tgpIVKO mice were a direct consequence of
MHCII deficiency in LNSCs, we adoptively transferred T cells isolated
from LN of K14tgpIVKO or control K14tgmice into Rag2−/− mice. 4 mo
later, recipients that received T cells from >18-mo-old K14tgpIVKO

mice exhibited a significant loss of weight compared with mice
injected with T cells isolated from age-matched K14tg controls (Fig
5A). Accordingly, immunofluorescence staining on small intestine
sections revealed that Rag2−/− hosts that received LN T cells from
K14tgpIVKO mice exhibited increased infiltrating CD45+ cells, and
in particular in the CD3+ T-cell compartment (Fig 5B). In addition,

Figure 2. Selective abrogation of endogenous MHCII
expression in LNSCs.
(A) Schematic representation of K14tgpIVKOmice. Briefly,
pIVKO were crossed with transgenic mice expressing the
full CIITA cDNA under the control of the keratin 14 (K14)
promoter (K14tg). (B) Relative mRNA expression of K14
by LECs, BECs, FRCs, B cells and cTEC from K14tgpIVKO

mice, measured by qPCR and normalized to GAPDH. Data
are representative of two experiments with 10 mice
pooled/group (C) Flow cytometry histograms showing
the expression of MHCII molecules by cTECs (gated on
CD45negEpCAM+Ly5.1hi cells) and mTECs (gated on
CD45negEpCAM+Ly5.1intcells) from indicated mice. (D)
Flow cytometry dot plots showing CD8+ and CD4+ T-cell
frequencies in LN of indicated mice (gated on CD3+

cells). (C, D) Data are representative of two experiments
with three mice/group. (E) Histograms showing MHCII
expression (MFI) by LECs, BECs, and FRCs from LN of
indicated mice, either naive (filled) or injected s.c. with
IFN-γ 24 h before (hatched). (F) Graphs showing MHCII
expression (MFI) by CD11b+ cDCs (CD11chiCD11b+), CD8α+
DCs (CD11chiCD8α+), pDCs (CD11cintPDCA-1+), B cells
(CD19+), andmonocytes/macrophages (CD11cneg CD11b+)
isolated from LNs of indicated mice. (E, F) Data are
representative of two experiments with 3-4 mice/group.
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frequencies of naive CD62LhiCD44lo CD4+ and CD8+ T cells were
decreased in LN of mice injected with T cells from K14tgpIVKO

donors (Fig 5C). Frequencies of effector CD4+ T cells producing IFN-γ
or IL-17 were also augmented, as well as the frequency of IFN-γ
producing CD8+ T cells, in LN of Rag2−/−mice transferred with T cells
from K14tgpIVKO mice, (Fig 5D). Again, no significant difference was
observed when adoptively transferred T cells were isolated from
4-mo-old K14tgpIVKO or control K14tg donors (not shown). As ob-
served in donor LNs, the frequency of Foxp3+ Tregs was significantly
reduced in LNs of recipient Rag2−/− mice injected with 18-mo-old
K14tgpIVKO compared with control K14tg T cells (Fig 5E), suggesting
that the impaired Treg compartment would account for autoim-
mune T-cell disorders. Although a role for MHCII expression by cells
in peripheral organs cannot be formally excluded, our data show
that both Treg and non-Treg cells were affected in the absence of
MHCII-restricted Ag presentation by LNSCs.

Altogether, our data suggest that MHCII expression by LNSCs
contributes to self-reactive T-cell tolerance. When abrogated, it
results in impaired Treg frequencies, enhanced self-reactive T-cell
activation, and subsequent peripheral tissue infiltration in elderly
mice.

Deletion of MHCII on LNSCs decreases Treg proliferation

Interestingly, the levels of expression of MHCII molecules by LECs
were significantly higher in elderly (18 mo) compared with young
(4 mo) mice (Fig 6A). A slight, but not significant, increase in MHCII
expression by BECs, but not by FRCs, was also observed. These
observations can be a consequence of increased levels of IFN-γ in

old versus young LNs, (although undetectable by ELISA, not shown)
and/or an enhanced sensitivity to IFN-γ. Accordingly, LECs and BECs
express higher levels of IFN-γ receptor in LNs from elderly com-
pared with younger mice (Fig 6A). These results suggest a more
substantial contribution of MHCII-restricted Ag presentation by
LECs in aging mice, and provide a possible explanation of why the
phenotype observed in K14tgpIVKO only appeared after several
months.

Treg frequencies were found impaired in aging (18 mo), but not in
young adult (4 mo) K14tgpIVKO mice lacking MHCII expression in
LNSCs. Therefore, we tested whether Treg proliferation may be
affected by the loss of MHCII expression in LECs. Immunofluores-
cence staining on LN sections from K14tgpIVKO and control elderly
showed that the frequency of proliferating (red, Ki67+) Tregs (green,
Foxp3+) in close interaction with LECs (Lyve-1+, in white) was sig-
nificantly increased in aging controls compared with K14tgpIVKO

mice (Fig 6B).
We next tested whether IFN-γ stimulation, which promotes MHCII

up-regulation in LNSCs, could accelerate this phenotype. WT mice
were injected or not with IFN-γ, together with FTY720, which inhibits
T-cell egress from LNs (Cyster & Schwab, 2012), and LECs and Treg
were analysed in LNs 6 d after IFN-γ injection. Immunofluorescence
staining revealed that the frequency of proliferating (red, Ki67+)
Tregs (green, Foxp3+) in close interaction with LECs (Lyve-1+, in
white) was significantly increased in mice treated with IFN-γ com-
pared with untreated mice (Fig 6C). Again, to determine whether
increased Treg expansion in LNs following IFN-γ injection was
dependent on MHCII expression by LNSC, most likely by LECs, we
performed similar experiments in K14tgpIVKO and K14tg control

Figure 3. Aging K14tgpIVKO mice exhibit enhanced
effector T-cell infiltration in peripheral organs and
increased levels of autoantibodies.
(A) K14tgpIVKO (white) and K14tg control mice (black)
were analysed at 4 and 18 mo. Percentages of infiltrating
CD4+ (upper) and CD8+ (lower) T cells in SC and SGs from
K14tgpIVKO and control K14tgmice at the indicated ages.
Data are pooled from five individual mice. (B) Flow
cytometry analyses of cytokine production by infiltrating
CD4+ T cells in the intestine of 18-mo-old K14tgpIVKO and
control K14tgmice. Data are pooled from four individual
mice and are representative of two experiments. (C) Sera
from 18-mo-old K14tgpIVKO and control mice were
individually tested for antibody reactivity against organ-
specific proteins in immunoblots loaded from left to
right; the liver (Li), brain (Br), lung (Lu), kidney (Kd), SC,
SGs, heart (He), and Gut. Representative examples are
shown. Colored circles represent the intensity of serum
reactivity in the immunoblots. Data are pooled from five
individual mice. Two-way Anova; *P < 0.05; **P < 0.01; n.s.,
not significant. Error bars depict mean ± SEM.
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mice. We observed an increased Treg proliferation in LNs of K14tg
controls, and further demonstrated that proliferating (red, Ki67+)
Tregs (green, Foxp3+) (red arrows) in close proximity of LECs (white,
Lyve-1+) (Fig 6C). In contrast, Treg proliferation in LEC proximity (red
arrows) was lower in LNs of K14tgpIVKOmice, demonstrating that the
increase of proliferation of Tregs interacting with LECs was de-
pendent on their expression of MHCII (Fig 6C). In contrast, we did
not observe any increase in the proliferation of non-Treg (Foxp3neg)
CD4+ T cells upon IFN-γ stimulation, nor difference between K14tg
controls and K14tgpIVKO mice (not shown), suggesting that the Treg
compartment is specifically affected. Finally, to examine a potential
direct contribution of LECs as MHCII-restricted APCs in inducing
Treg proliferation, we repeated the above experiments in mice in
which MHCII expression was selectively abrogated in LECs. For that,
we used Prox-1-CreERT2 mice, expressing the Tamoxifen-inducible
Cre recombinase under the promoter Prox-1, which is selectively
expressed in adult LECs (Bazigou et al, 2011). Prox-1-CreERT2 mice
were crossed with MHCIIfl mice, allowing the selective deletion of
MHCII molecules in LECs upon Tamoxifen treatment (not shown).
Immunofluorescence analyses of LN sections demonstrated that

the frequency of proliferating Tregs in contact with LECs 6 d after
IFN-γ injection was significantly reduced in mice in which LECs do
not express MHCII molecules (Prox-1-CreERT2 MHCIIfl) compared with
control mice (MHCIIfl) (Fig 6D). Altogether, our results demonstrate
that IFN-γ–mediated MHCII up-regulation by LNSCs promotes Treg
proliferation, with a major contribution of LECs.

Discussion

Our results provide the first evidence for an in vivo role of LNSCs in
impacting peripheral T-cell tolerance as MHCII-restricted APCs.
We have recently published that subsets of murine LNSCs present
MHCII–peptide complexes acquired from DCs to induce CD4+ T-cell
dysfunction (Dubrot et al, 2014). Here, we further show that LNSCs
inhibit autoreactive T-cell responses by directly presenting Ags
through endogenous MHCII molecules. A recent study suggested
that, although LECs express surface MHCII molecules, they
cannot present a model Ag to CD4+ T cells presumably because of
the lack of expression of H2-M in steady state, preventing the

Figure 4. K14tgpIVKO mice exhibit enhanced T-cell
activation and impaired Treg frequencies in LNs upon
aging.
K14tgpIVKO (white) and K14tg control mice (black) were
analysed at 4 and 18 mo. (A) Frequencies of naive
(CD62LhiCD44lo) and activated/memory (CD62LloCD44hi)
CD4+ and CD8+ T cells. (B) Frequencies of PD-1+, IFN-γ,
and IL-17 producing cells among CD4+ and/or CD8+

T cells. (C, D) Foxp3+ Treg identification by flow
cytometry (CD4+ CD25+ Foxp3+) (C) and IHC staining
(Foxp3+) (D) in lymph nodes of indicated mice. (A–D)
Data are representative of three experiments with 3–7
mice/group. *P < 0.05; **P < 0.01; ***P < 0.001; n.s., not
significant. Error bars depict mean ± SEM. (E) CD4+ CD25hi
T cells (Treg) from total skin LNs of 18-mo-old
K14tgpIVKO and K14tg mice were cultured (ratio 1:5, 1:3,
and 1.1) with proliferation dye-labeled naive CD4+

CD25neg T cells. Labeled T-cell proliferation was
assessed by flow cytometry after 5 d of co-culture. Data
are representative of two experiments. Two-way Anova;
**P < 0.01.
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loading of endogenous antigenic peptides onto MHCII molecules
(Rouhani et al, 2015). However, we show that LECs, BECs, and FRCs
that express the IFN-γ–inducible-CIITA pIV, require IFN-γ to up-
regulate H-2M molecules, as they do for MHCII expression, these
two genes being co-regulated by CIITA (Reith & Mach, 2001). In
addition, LNSCs were described to express considerable amounts
of invariant chain (Ii) and cathepsin L (Rouhani et al, 2015), and
therefore seem well equipped for the presentation of antigenic
peptides through MHCII in situations involving the presence
of IFN-γ.

Genetic abrogation of MHCII in LNSCs in vivo leads to impaired
regulatory T-cell frequencies and in vitro functions, enhanced
effector T cell differentiation LNs and peripheral tissue infiltration,
and subsequent development of T cell–mediated autoimmunity in
elderly mice. Indeed, mice lacking MHCII in LNSCs exhibit spon-
taneous signs of autoimmunity in elderly mice. LNSCs express a
broad range of self-Ags. Therefore, our hypothesis is that abro-
gation of MHCII in these cells will lead to an inflation of polyclonal
memory/effector T cells. In agreement, no difference was observed
in the frequency of several TCR Vβ chains expressed by CD4+ and
CD8+ T cells isolated from LNs of old control and knockout mice (not
shown), suggesting that there is no restriction of T-cell clonality in
mice lacking MHCII in LNSCs. Importantly, in this model there is no
pre-existing early CD4+ T-cell bias, nor Treg function impairment.
K14tgpIVKO young adult mice do not present any abnormality, ex-
cluding the possibility of a defect from thymic selection. In addition,
T cells from 6- to 10-wk-old K14tgpIVKO mice were recently ex-
tensively characterized, and normal distribution of CD4+ naive,

effector, and Foxp3+ T-cell subsets were observed in the thymus,
spleen, and peripheral LNs (Thelemann et al, 2014).

In contrast to a recent study suggesting an activity of K14 pro-
moter in LNSCs (Baptista et al, 2014), we did not observe any K14
mRNA expression in LECs, BECs, and FRCs (Fig 2B). Consistently,
MHCII expression was similar in LNSCs isolated from pIVKO and
K14tgpIVKO mice (Fig 2E), confirming that the K14 ciita transgene
does not promote any MHCII expression in LNSCs. However, be-
cause peripheral non-hematopoietic tissue-resident cells can up-
regulate MHCII molecules in an IFN-γ–inducible pIV-dependent
manner (Duraes et al, 2013), this mouse model does not repre-
sent per se a valid mouse model to study the specific role of
endogenous MHCII expression by LNSCs in shaping peripheral CD4+

T-cell responses. For instance, intestinal epithelial cells (IECs),
hepatocytes and liver sinusoidal endothelial cells, pancreatic
β cells, or astrocytes were postulated to be capable of MHCII-
mediated Ag presentation, although very little in vivo data are
available on the potential impact on peripheral CD4+ T-cell re-
sponses (reviewed in Duraes et al [2013]). Recently, using themouse
model we are presently exploiting, two studies have highlighted
opposite roles for MHCII expression in distinct target tissues.
First, IFN-γ–mediated MHCII up-regulation by IECs exerts anti-
inflammatory effects and protect against colitis (Thelemann
et al, 2014). In contrast, in the context of experimental autoim-
mune myocarditis, elevated IFN-γ–inducible cardiac endothelial
MHCII expression exacerbates the disease (Thelemann et al, 2016).
Together, these findings provide evidence of a critical role of pIV-
mediated non-hematopoietic MHCII expression in peripheral tissues

Figure 5. T cells isolated from mice lacking MHCII
expression in LNSCs induce autoimmunity upon
transfer into immunodeficient mice.
(A–E) T cells isolated from LNs and spleen of 18-mo-old
K14tgpIVKO (white) and control mice (black) were
adoptively transferred into Rag2−/− recipient mice that
were analysed 4 mo later. (A) Mouse weight. Data are
pooled from four mice and representative of two
experiments. (B) Sections of small intestines from
recipient Rag2−/− mice were stained with antibodies
against CD45 (green), CD3 (red), and with DAPI (blue).
Pictures show representative tissue sections. Graphs
represent the quantification of CD3+ T cells/area and
are pooled from 12 tissue sections from three individual
mice/group. (C–E) Flow cytometry dot plots showing
the frequency of CD62LhiCD44lo CD4+ and CD8+ T cells
(C), the frequency of CD4+ T cell–producing IFN-γ or IL-17
and the frequency of CD8+ T cell–producing IFN-γ in LNs
(D) and Treg frequencies (E) in LNs of transferred Rag2−/
− recipient mice. Data are representative of two
experiments with 2–4 mice/group each. (C–E) *P < 0.05;
**P < 0.01; ***P < 0.001; n.s. (A, B, D) unpaired t test, (C, E)
two-way Anova.
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upon inflammation, the impact on T-cell responses being largely
dependent on the target organ. Here, we add a distinct role of LN-
resident stromal populations in shaping CD4+ T-cell responses,
providing support to Treg homeostasis and maintaining peripheral
tolerance. We cannot totally exclude a role for a lack of MHCII
expression by cells in peripheral tissue on local T-cell reactivation
in K14tgpIVKO mice. Indeed, it is possible that T cells infiltrating
peripheral organs are maintained in a tolerogenic state by local
MHCII+ cells, and that this phenomenon is abrogated in our mouse
model. However, it is unlikely, for several reasons. First, a similar
phenotype was obtained after adoptive transfer of T cells from LN
of K14tgpIVKO mice into Rag2−/− with competent MHCII peripheral
tissues. Importantly, T-cell compartments in the recipient Rag2−/−

mice recapitulated the effects observed in the donor transgenic
mice indicating a contribution of LNSCs to peripheral T-cell al-
terations. Second, although a contribution of MHCII expression by

tissue-resident cells has been described before, it was always in
inflammatory settings, in which these cells indeed up-regulate
MHCII in contrast to our stud which was performed in the steady
state (Duraes et al, 2013), minimizing their possible contribu-
tion as MHCII-restricted Ag presenting cells in the absence of
model-induced inflammation. Finally, LN-resident Tregs exhibit
impaired proliferation in LNs not only in K14tgpIVKO, but also in
Prox-1-CreERT2 MHCIIfl mice, supporting a pro-tolerogenic role for
MHCII-restricted Ag presentation by LNSCs, in particular LECs, in
dampening T-cell autoimmune reactions.

We have previously shown that endogenous MHCII expression by
LECs, BECs, and FRCs was significantly increased inWTmice compared
to IFN-γ receptor–deficient mice (Dubrot et al, 2014), demonstrating
that the presence of low levels of IFN-γ in naive mice drives pIV-
mediated MHCII endogenous expression in steady-state LNSCs. This
was confirmed by reduced MHCII expression by LNSCs in steady-state

Figure 6. Deletion of MHCII on LECs decreases Treg
proliferation.
(A)MHCII and IFN-γ receptor (IFNγR) expression (MFI) by
LECs, BECs, and FRCs from LN of WT mice of the
indicated age. Data are representative of two
experiments with three mice/group each. (B–D) LN
sections depicting LECs (Lyve-1, white) and proliferating
Tregs (red arrows) (Ki67, red; and Foxp3, green) from 18-
mo-old K14tg and K14tgpIVKO mice (B), 3-mo-old WT and
K14tg and K14tgpIVKO (C), and 3-mo-old Tamoxifen-
treated Prox-1-CreERT2 MHCIIfl and MHCIIfl control mice
(D). In (C) and (D), animals were treated with FTY720
every day for the last 6 d, and with IFN-γ 6 d before
harvesting the LNs. Graphs represent the percentages
of Ki67+ among Foxp3+ cells in contact with LECs from LN
of the indicated mice. (B–D) Data are pooled from at
least nine tissue sections from three individual mice/
group. *P < 0.05; **P < 0.01; ***P < 0.001; n.s. (A, C) Two-
way Anova, (B, D) unpaired t test.
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LNs from K14tgpIVKO compared with control mice. Therefore, basal
(and presumably variable) levels of circulating steady-state IFN-γ
promote endogenous MHCII expression by LNSCs, and confer them
the ability to function as competent MHCII-mediated APCs. Increased
inflammatory status over time might be due to the accumulation of
punctual and mild infectious processes or altered gut microbiotic
composition upon aging (Claesson et al, 2012).

Last, we provide evidence for a direct effect of MHCII-restricted Ag
presentation by LECs in promoting Treg proliferation. Genetic selective
abrogation of MHCII expression by LECs in mice results, similarly to
whatwas observed in K14tgpIVKOmice, in impaired proliferation of Treg
in contact with LECs. Therefore, among the LNSC subsets, LECs seems
to be themain contributors in inducing Treg proliferation. Distinct sets
of PTA expression, together with differential levels of expression of co-
inhibitory molecules, such as PDL-1 (Tewalt et al, 2012), by LNSC
populations might give rise to distinct impacts on T-cell responses,
such as T-cell apoptosis, T-cell anergy, or Treg induction. Elevated PDL-1
expression by LECs compared with BECs and FRCs might explain a role
for those cells in impacting Tregs, which express high levels of PD-1.
Although we did not elucidate the molecular mechanisms, a se-
lective effect on Tregs, which mostly express a self-reactive TCR,
could result from the ability of LECs to present endogenously
expressed PTAs. One explanation could be the use of the autophagy
pathway by LECs to present endogenous PTAs through MHCII mole-
cules. This hypothesis would be in accordance with previous results
obtained in the thymic epithelium (Nedjic et al, 2008; Aichinger et al,
2013). Future experiments in the laboratory will use mice genetically
deficient for autophagy to firmly demonstrate the implication of this
pathway in the ability of the different LNSC subsets to present PTAs
through MHCII molecules and to alter the Treg compartment. Our
experiments do not rule out another possible mechanism of action by
which MHCII expression in LNSC may support T-cell inactivation in an
Ag-independent fashion. MHCII is a natural ligand for the molecule
lymphocyte activation gene 3 (LAG-3), expressed on activated T cells
and can be induced by IFN-γ stimulation. This immune checkpoint has
an inhibitory role for LAG-3 in controlling both CD4 and CD8 T-cell
proliferation in vitro and in vivo (Workman et al, 2004; Grosso et al,
2007). In addition, LAG-3 expression on Tregs has been shown to be
important for their suppressive function (Grosso et al, 2007; Okamura
et al, 2009). Moreover, the co-expression of LAG-3 with the inhibitory
receptor PD-1 on exhausted T cells or Tregs correlates with a greater
state of effector T-cell exhaustion and the suppressive function of
Tregs. The relative contribution of both Ag-dependent and/or Ag-
independent pathways remains to be addressed.

In conclusion, our work identifies novel in vivo functions of MHCII
expression by LNSCs in the maintenance of peripheral T-cell tol-
erance by inhibiting autoreactive T cells. We also define the LECs as
important MHCII expressing cells supporting Treg homeostasis.

Materials and Methods

Mice and treatments

C57BL/6 WT mice were purchased from Charles River. pIV−/−

(Waldburger et al, 2003), Ciita−/− and K14tgpIVKO (Laufer et al, 1996),

and Rag2−/− (Jackson Laboratories) Prox-1-CreERT2 MHCIIfl mice have
been previously described (Bazigou et al, 2011). To selectively
abrogate MHCII expression in LECs, Prox-1-CreERT2 MHCIIfl/fl (and
MHCIIfl/fl control) mice were injected with tamoxifen (i.p) twice a day
for four consecutive days (2 mg/mice/d). 2 wk after the last in-
jection, mice were treated with IFN-γ and FTY720 as described
below. These mouse strains are on a C57BL/6 background and were
housed and maintained under SPF conditions at the Geneva
Medical School animal facility and under EOPS conditions at
Charles River, France. All animal husbandry and experiments were
approved by and performed in accordance with guidelines from the
Animal Research Committee of the University of Geneva. Geno-
typing was carried out by using PCR on ear biopsies with the Phire
Tissue Direct PCR Master Mix (F170L; Thermo Fisher Scientific). When
indicated, IFN-γ (Peprotech) was injected subcutaneously (both
flanks and neck, 1 μg/50 μl), and FTY720 (Sigma-Aldrich) (20 μg) was
injected every day for 6 d before the experiment. Mice from each
group were randomized before treatments.

LNSC and cell tissue isolation

LNSCs were obtained as previously described (Dubrot et al, 2014). In
brief, total skin or skin-draining LNs from individual or 10–15 pooled
mice were cut into small pieces and digested in RPMI containing
1 mg/ml collagenase IV (Worthington Biochemical Corporation),
40 μg/ml DNase I (Roche), and 2% FBS. Undigested cells were
further digested with 1 mg/ml collagenase d, and 40 μg/ml DNase I
(Roche). The reaction was stopped by addition of 5 mM EDTA and
10% BSA. Samples were further disaggregated through a 70-μm cell
strainer and blocked with anti-CD16/32 antibody. Single-cell sus-
pensions were negatively selected using CD45 microbeads and a
magnetic bead column separation (Miltenyi Biotec).

Cells from LN, the spleen, the SC, and SGs were isolated by
digesting organ fragments with an enzymatic mix containing col-
lagenase D (1 μg/ml) and DNAse I (10 μg/ml) (Roche) in HBSS [14].
For SC and SG, single-cell suspensions were further centrifuged
through a discontinuous 30:70% percoll (Invitrogen) gradient. T cells
were further analysed by flow cytometry.

Small intestines were excised and transferred into PBS 2% FCS.
Peyer’s patches and adipose tissue were carefully removed. The
small intestines were cut longitudinally and cleaned of faecal
content. The small intestines were next incubated in RPMI con-
taining 10% FCS, 2 mM EDTA, and 1 mM DTT for 30 min at 37°C in a
shaking incubator to remove epithelial cells, the supernatant being
discarded. The remaining tissue was digested twice in RPMI con-
taining 1 mg/ml of collagenase D (Roche) for 30 min at 37°C in a
shaking incubator. Cells were recovered from the supernatant and
filtered through a 70-μm cell strainer.

Antibodies, flow cytometry, and cell sorting

Anti-gp38 (8.1.1), anti-CD31 (390), anti-CD11c (N418), anti-CD44
(IM7), and anti-IAb (AF6.120.1) mAbs were from BioLegend. Anti-
CD45 (30F11), anti-CD16/32 FcyRIII (2.4G2), anti-I-Ad/I-Ed (2G9),
anti-IFNγR (GR20), and H2-M (2E5A) were from BD. Anti-CD19 (1D3),
anti-CD8 (53–6.7), anti-CD4 (GK1.5), anti-CD11b (M1/70), anti-CD62L
(MEL-14), anti-PDCA-1 (eBio927), anti-PD-1 (J43), anti-IFN-γ (XMG1.2),
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anti-IL-17 (eBio17B7), and anti-Foxp3 (FJK-16s) were from eBio-
science. Anti-EpCAM (caa7-9G8) and anti-Ly5.1 (6C3) were from
Miltenyi Biotec.

For LNSC flow cytometry sorting, enriched CD45neg cells were
stained with mAbs against CD45, gp38, and CD31. In some experi-
ments, cells were also stained with mAbs against MHCII or isotype
control as indicated. For cTEC and mTEC sorting, enriched CD45neg

cells were stained with mAbs against CD45, EpCAM, and Ly5.1.
Intracellular cytokine stainings were carried out with the Cytofix/

Cytoperm kit (BD) for IFN-γ and IL-17 staining. Foxp3 staining was
performed with the eBioscience kit, according to manufacturer’s
instructions. For IFN-γ and IL-17 staining, LN cells were cultured in
RPMI containing 10% heat-inactivated fetal bovine serum, 50 mM
2-mercaptoethanol, 100 mM sodium pyruvate, and 100 μM penicillin/
streptomycin at 37°C and 5% CO2. Cells were stimulated for 18 h with
PMA/ionomycin and Golgi stop solution (BD) was added during the
last 4 h of culture before the staining.

Cells were either acquired on a Gallios or sorted using a
MoFlowAstrios (Beckman Coulter), and analysed using FlowJo (Tree
Star) or Kaluza softwares.

Immunofluorescence microscopy

Mice were transcardiacally perfused with PBS, and intestines were
fixed in paraformaldehyde before inclusion in paraffin. Preserved
organs were cut into 7-μm-thick sections and deparaffinised in
xylene–ethanol. Ag retrieval was performed in citrate buffer. Sec-
tions were then stained using labelled antibodies against CD45 (30-
F11) and CD3 (17A2) and DAPI (Sigma-Aldrich) counter-staining.
Sections were mounted with Mowiol fluorescent mounting me-
dium (EMD). Images were acquired with a confocal microscope (LSM
700; Carl Zeiss Inc. and SP5; Leica).

Skin LNs from untreated mice or mice treated with IFN-γ and
FTY720 were frozen in OCT medium. 10-μm-thick sections were cut
and fixed with paraformaldehyde 4% for 20 min. After washing and
permeabilization, the sections were stained overnight at 4°C using
a rabbit anti-Lyve-1 antibody (Reliatech GmbH). Secondary staining
was performed using a Alexafluor546-labelled donkey anti-rabbit
antibody, Alexafluor488-labelled anti-Foxp3 (150D) antibodies and
eF660-Ki67 (SolA15), for 2 h at room temperature. After DAPI (Sigma-
Aldrich) staining, sections were mounted with Mowiol fluorescent
mounting medium (EMD). Images were acquired with a confocal
microscope (LSM 700; Carl Zeiss Inc. and SP5; Leica). Tregs in
“close proximity” (<5 μm) of LECs were quantified as proliferating
(Ki67+Foxp3+) or non-proliferating (Foxp3+) cells, and the ratio of
proliferating Tregs was calculated. At least 20 images/condition
were quantified.

Treg suppression assay

In vitro Treg suppressive assays were performed as follows: CD4+

CD25hi T cells (Treg) were purified by flow cytometry from total skin
LNs of 18-mo-old K14tgpIVKO and K14tg control mice and cultured at
the indicated ratio with 2 × 105 proliferation dye-labeled naive CD4+

CD25neg T cells in the presence of bone marrow–derived DC and
anti-CD3 antibodies. Labeled T-cell proliferation was assessed by
flow cytometry after 5 d of co-culture.

T-cell adoptive transfer into Rag22/2 recipients

LN and spleen of donor mice were harvested, and T cells were
negatively selected from the cell suspension using a PAN T isolation
kit (Mylteniy biotec) according to the manufacturer’s instructions.
Purity generally exceeded 95%. 2–5 × 106 T cells were injected in-
travenously into Rag2−/− mice. Recipient mice were randomized
before transfer and co-housed during the experiment.

RNA isolation and quantitative RT-PCR

Total RNA was isolated using Tri-Reagent (Ambien) from sorted
cells. cDNA was synthesized using random hexamers and M-MLV
reverse transcriptase (Promega). PCRs were performed with the
CFX Connect real-time PCR detection system and iQ SYBR green
super mix (Bio-Rad Laboratories). The results were normalized
with GAPDH or 60S ribosomal protein L32 mRNA expression and
quantified with a standard curve generated with serial dilutions of
a reference cDNA preparation. Primer sequences: I-Ab forward, 59-
CTG TGG TGG TGG TGA TGG T-39 and reverse, 59-CGT TGG TGA AGT AGC
ACT CG-39. H2-Mα forward, 59-CTCGAAGCATCTACACCAGTG-39 and re-
verse, 59-TCCGAGAGCCCTATGTTGGG-39. K14 orward, 59-AGG GAG AGG
ACG CCC ACC TT-39 and reverse, 59- CCT TGG TGC GGA TCT GGC GG-39

Lysate preparation and immunoblotting

Tissues were homogenized in T-PER tissue protein extraction re-
agent (Thermo Fisher Scientific) supplemented with a cocktail of
protease inhibitors (Complete, Roche). Protein extracts were in-
cubated at 95°C for 5 min with of 4× SDS–PAGE–loading buffer
(250 mmol Tris–HCl at pH = 6.8, 40% glycerol, 8% SDS, 0.57 mol
β-mercaptoethanol, and 0.12% bromophenol blue). Equal amounts
of protein were run on 12% SDS–PAGE gels and transferred onto a
polyvinylidene difluoride membrane (Hybond-P; Amersham Bio-
sciences). Sera from K14tgpIVKO or control mice were visualized with
HRP-conjugated goat anti-mouse IgG (Bio-Rad Laboratories) and
the ECL WesternBright Sirius (advansta).

Statistical analysis

Statistical significance was assessed by the two-tailed unpaired
t test or two-way Anova, and Log-rank test using Prism software
(GraphPad).
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M Gannagé: conceptualization.
S Hugues: conceptualization, supervision, project administration,
and writing—original draft, review, and editing.

Conflict of Interest Statement

The authors declare that they have no conflict of interest.

References

Adamopoulou E, Tenzer S, Hillen N, Klug P, Rota IA, Tietz S, Gebhardt M,
Stevanovic S, Schild H, Tolosa E, et al (2013) Exploring theMHC-peptide
matrix of central tolerance in the human thymus. Nat Commun 4:
2039. doi:10.1038/ncomms3039

Aichinger M, Wu C, Nedjic J, Klein L (2013) Macroautophagy substrates are
loaded onto MHC class II of medullary thymic epithelial cells
for central tolerance. J Exp Med 210: 287–300. doi:10.1084/jem.
20122149

Bajenoff M, Granjeaud S, Guerder S (2003) The strategy of T cell antigen-
presenting cell encounter in antigen-draining lymph nodes revealed
by imaging of initial T cell activation. J Exp Med 198: 715–724.
doi:10.1084/jem.20030167

Baptista AP, Roozendaal R, Reijmers RM, Koning JJ, Unger WW, Greuter M,
Keuning ED, Molenaar R, Goverse G, Sneeboer MM, et al (2014) Lymph
node stromal cells constrain immunity via MHC class II self-antigen
presentation. eLife 3: doi:10.7554/elife.04433

Bazigou E, Lyons OT, Smith A, Venn GE, Cope C, Brown NA, Makinen T (2011)
Genes regulating lymphangiogenesis control venous valve formation
and maintenance in mice. J Clin Invest 121: 2984–2992. doi:10.1172/
jci58050

Braun A, Worbs T, Moschovakis GL, Halle S, Hoffmann K, Bolter J, Munk A,
Forster R (2011) Afferent lymph-derived T cells and DCs use different
chemokine receptor CCR7-dependent routes for entry into the lymph
node and intranodal migration. Nat Immunol 12: 879–887. doi:10.1038/
ni.2085

Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM (2003)
Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+
regulatory T cells by TGF-beta induction of transcription factor Foxp3.
J Exp Med 198: 1875–1886. doi:10.1084/jem.20030152

Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, Harris HM,
Coakley M, Lakshminarayanan B, O’Sullivan O, et al (2012) Gut
microbiota composition correlates with diet and health in the elderly.
Nature 488: 178–184. doi:10.1038/nature11319

Cohen JN, Guidi CJ, Tewalt EF, Qiao H, Rouhani SJ, Ruddell A, Farr AG, Tung KS,
Engelhard VH (2010) Lymph node-resident lymphatic endothelial
cells mediate peripheral tolerance via Aire-independent direct
antigen presentation. J Exp Med 207: 681–688. doi:10.1084/
jem.20092465

Cyster JG, Schwab SR (2012) Sphingosine-1-phosphate and lymphocyte
egress from lymphoid organs. Annu Rev Immunol 30: 69–94.
doi:10.1146/annurev-immunol-020711-075011

Dubrot J, Duraes FV, Potin L, Capotosti F, Brighouse D, Suter T, LeibundGut-
Landmann S, Garbi N, Reith W, Swartz MA, et al (2014) Lymph node
stromal cells acquire peptide-MHCII complexes from dendritic cells
and induce antigen-specific CD4+ T cell tolerance. J Exp Med 211:
1153–1156. doi:10.1084/jem.20132000

Duraes FV, Thelemann C, Sarter K, Acha-Orbea H, Hugues S, Reith W (2013)
Role of major histocompatibility complex class II expression by non-
hematopoietic cells in autoimmune and inflammatory disorders:
Facts and fiction. Tissue Antigens 82: 1–15. doi:10.1111/tan.12136

Fletcher AL, Lukacs-Kornek V, Reynoso ED, Pinner SE, Bellemare-Pelletier A,
Curry MS, Collier AR, Boyd RL, Turley SJ (2010) Lymph node fibroblastic
reticular cells directly present peripheral tissue antigen under
steady-state and inflammatory conditions. J Exp Med 207: 689–697.
doi:10.1084/jem.20092642

Fletcher AL, Malhotra D, Turley SJ (2011) Lymph node stroma broaden the
peripheral tolerance paradigm. Trends Immunol 32: 12–18. doi:10.1016/
j.it.2010.11.002

Grosso JF, Kelleher CC, Harris TJ, Maris CH, Hipkiss EL, De Marzo A, Anders R,
Netto G, Getnet D, Bruno TC, et al (2007) LAG-3 regulates CD8+ T cell
accumulation and effector function in murine self- and tumor-
tolerance systems. J Clin Invest 117: 3383–3392. doi:10.1172/jci31184

Irla M, Hugues S, Gill J, Nitta T, Hikosaka Y, Williams IR, Hubert FX, Scott HS,
Takahama Y, Hollander GA, et al (2008) Autoantigen-specific
interactions with CD4+ thymocytes control mature medullary thymic
epithelial cell cellularity. Immunity 29: 451–463. doi:10.1016/j.
immuni.2008.08.007

Khan O, Headley M, Gerard A, Wei W, Liu L, Krummel MF (2011) Regulation of
T cell priming by lymphoid stroma. PLoS One 6: e26138. doi:10.1371/
journal.pone.0026138

Laufer TM, DeKoning J, Markowitz JS, Lo D, Glimcher LH (1996) Unopposed
positive selection and autoreactivity in mice expressing class II MHC
only on thymic cortex. Nature 383: 81–85. doi:10.1038/383081a0

Link A, Vogt TK, Favre S, Britschgi MR, Acha-Orbea H, Hinz B, Cyster JG, Luther
SA (2007) Fibroblastic reticular cells in lymph nodes regulate the
homeostasis of naive T cells. Nat Immunol 8: 1255–1265. doi:10.1038/
ni1513

Lukacs-Kornek V, Malhotra D, Fletcher AL, Acton SE, Elpek KG, Tayalia P,
Collier AR, Turley SJ (2011) Regulated release of nitric oxide by
nonhematopoietic stroma controls expansion of the activated T cell
pool in lymph nodes. Nat Immunol 12: 1096–1104. doi:10.1038/ni.2112

Mueller DL (2010) Mechanisms maintaining peripheral tolerance. Nat
Immunol 11: 21–27. doi:10.1038/ni.1817

Nedjic J, Aichinger M, Emmerich J, Mizushima N, Klein L (2008) Autophagy in
thymic epithelium shapes the T-cell repertoire and is essential for
tolerance. Nature 455: 396–400. doi:10.1038/nature07208

Okamura T, Fujio K, Shibuya M, Sumitomo S, Shoda H, Sakaguchi S, Yamamoto
K (2009) CD4+CD25-LAG3+ regulatory T cells controlled by the
transcription factor Egr-2. Proc Natl Acad Sci USA 106: 13974–13979.
doi:10.1073/pnas.0906872106

Pham TH, Baluk P, Xu Y, Grigorova I, Bankovich AJ, Pappu R, Coughlin SR,
McDonald DM, Schwab SR, Cyster JG (2010) Lymphatic endothelial cell
sphingosine kinase activity is required for lymphocyte egress and
lymphatic patterning. J Exp Med 207: 17–27. doi:10.1084/jem.20091619

Podgrabinska S, Kamalu O, Mayer L, Shimaoka M, Snoeck H, Randolph GJ,
Skobe M (2009) Inflamed lymphatic endothelium suppresses
dendritic cell maturation and function via Mac-1/ICAM-1-dependent
mechanism. J Immunol 183: 1767–1779. doi:10.4049/jimmunol.0802167

Reith W, Mach B (2001) The bare lymphocyte syndrome and the regulation of
MHC expression. Annu Rev Immunol 19: 331–373. doi:10.1146/annurev.
immunol.19.1.331

MHC-II in LNSCs prevent autoimmunity Dubrot et al. https://doi.org/10.26508/lsa.201800164 vol 1 | no 6 | e201800164 11 of 12

https://doi.org/10.1038/ncomms3039
https://doi.org/10.1084/jem.20122149
https://doi.org/10.1084/jem.20122149
https://doi.org/10.1084/jem.20030167
https://doi.org/10.7554/elife.04433
https://doi.org/10.1172/jci58050
https://doi.org/10.1172/jci58050
https://doi.org/10.1038/ni.2085
https://doi.org/10.1038/ni.2085
https://doi.org/10.1084/jem.20030152
https://doi.org/10.1038/nature11319
https://doi.org/10.1084/jem.20092465
https://doi.org/10.1084/jem.20092465
https://doi.org/10.1146/annurev-immunol-020711-075011
https://doi.org/10.1084/jem.20132000
https://doi.org/10.1111/tan.12136
https://doi.org/10.1084/jem.20092642
https://doi.org/10.1016/j.it.2010.11.002
https://doi.org/10.1016/j.it.2010.11.002
https://doi.org/10.1172/jci31184
https://doi.org/10.1016/j.immuni.2008.08.007
https://doi.org/10.1016/j.immuni.2008.08.007
https://doi.org/10.1371/journal.pone.0026138
https://doi.org/10.1371/journal.pone.0026138
https://doi.org/10.1038/383081a0
https://doi.org/10.1038/ni1513
https://doi.org/10.1038/ni1513
https://doi.org/10.1038/ni.2112
https://doi.org/10.1038/ni.1817
https://doi.org/10.1038/nature07208
https://doi.org/10.1073/pnas.0906872106
https://doi.org/10.1084/jem.20091619
https://doi.org/10.4049/jimmunol.0802167
https://doi.org/10.1146/annurev.immunol.19.1.331
https://doi.org/10.1146/annurev.immunol.19.1.331
https://doi.org/10.26508/lsa.201800164


Rouhani SJ, Eccles JD, Riccardi P, Peske JD, Tewalt EF, Cohen JN, Liblau R,
Makinen T, Engelhard VH (2015) Roles of lymphatic endothelial cells
expressing peripheral tissue antigens in CD4 T-cell tolerance
induction. Nat Commun 6: 6771. doi:10.1038/ncomms7771

Siegert S, Huang HY, Yang CY, Scarpellino L, Carrie L, Essex S, Nelson PJ,
Heikenwalder M, Acha-Orbea H, Buckley CD, et al (2011) Fibroblastic
reticular cells from lymph nodes attenuate T cell expansion by
producing nitric oxide. PLoS One 6: e27618. doi:10.1371/journal.
pone.0027618

Sixt M, Kanazawa N, Selg M, Samson T, Roos G, Reinhardt DP, Pabst R, Lutz MB,
Sorokin L (2005) The conduit system transports soluble antigens from
the afferent lymph to resident dendritic cells in the T cell area of the
lymph node. Immunity 22: 19–29. doi:10.1016/j.immuni.2004.11.013

Steinman RM, Hawiger D, Liu K, Bonifaz L, Bonnyay D, Mahnke K, Iyoda T,
Ravetch J, Dhodapkar M, Inaba K, et al (2003) Dendritic cell function
in vivo during the steady state: A role in peripheral tolerance. Ann N Y
Acad Sci 987: 15–25. doi:10.1111/j.1749-6632.2003.tb06029.x

Stern LJ, Potolicchio I, Santambrogio L (2006) MHC class II compartment
subtypes: Structure and function. Curr Opin Immunol 18: 64–69.
doi:10.1016/j.coi.2005.11.005

Sukseree S, Mildner M, Rossiter H, Pammer J, Zhang CF, Watanapokasin R,
Tschachler E, Eckhart L (2012) Autophagy in the thymic epithelium is
dispensable for the development of self-tolerance in a novel mouse
model. PLoS One 7: e38933. doi:10.1371/journal.pone.0038933

Swee LK, Bosco N, Malissen B, Ceredig R, Rolink A (2009) Expansion of
peripheral naturally occurring T regulatory cells by Fms-like tyrosine
kinase 3 ligand treatment. Blood 113: 6277–6287. doi:10.1182/blood-
2008-06-161026

Tewalt EF, Cohen JN, Rouhani SJ, Guidi CJ, Qiao H, Fahl SP, Conaway MR,
Bender TP, Tung KS, Vella AT, et al (2012) Lymphatic endothelial cells
induce tolerance via PD-L1 and lack of costimulation leading to high-
level PD-1 expression on CD8 T cells. Blood 120: 4772–4782. doi:10.1182/
blood-2012-04-427013

Thelemann C, Eren RO, Coutaz M, Brasseit J, Bouzourene H, Rosa M, Duval A,
Lavanchy C, Mack V, Mueller C, et al (2014) Interferon-gamma induces
expression of MHC class II on intestinal epithelial cells and protects mice
from colitis. PLoS One 9: e86844. doi:10.1371/journal.pone.0086844

Thelemann C, Haller S, Blyszczuk P, Kania G, Rosa M, Eriksson U, Rotman S,
Reith W, Acha-Orbea H (2016) Absence of nonhematopoietic MHC
class II expression protects mice from experimental autoimmune
myocarditis. Eur J Immunol 46: 656–664. doi:10.1002/eji.201545945

Tomei AA, Siegert S, Britschgi MR, Luther SA, Swartz MA (2009) Fluid flow
regulates stromal cell organization and CCL21 expression in a tissue-
engineered lymph nodemicroenvironment. J Immunol 183: 4273–4283.
doi:10.4049/jimmunol.0900835

Waldburger JM, Rossi S, Hollander GA, Rodewald HR, Reith W, Acha-Orbea H
(2003) Promoter IV of the class II transactivator gene is essential for
positive selection of CD4+ T cells. Blood 101: 3550–3559. doi:10.1182/
blood-2002-06-1855

Waldburger JM, Suter T, Fontana A, Acha-Orbea H, Reith W (2001) Selective
abrogation of major histocompatibility complex class II expression on
extrahematopoietic cells in mice lacking promoter IV of the class II
transactivator gene. J Exp Med 194: 393–406. doi:10.1084/jem.194.4.393

Wirnsberger G, Hinterberger M, Klein L (2011) Regulatory T-cell differentiation
versus clonal deletion of autoreactive thymocytes. Immunol Cell Biol
89: 45–53. doi:10.1038/icb.2010.123

Workman CJ, Cauley LS, Kim IJ, Blackman MA, Woodland DL, Vignali DA (2004)
Lymphocyte activation gene-3 (CD223) regulates the size of the
expanding T cell population following antigen activation in vivo.
J Immunol 172: 5450–5455. doi:10.4049/jimmunol.172.9.5450

License: This article is available under a Creative
Commons License (Attribution 4.0 International, as
described at https://creativecommons.org/
licenses/by/4.0/).

MHC-II in LNSCs prevent autoimmunity Dubrot et al. https://doi.org/10.26508/lsa.201800164 vol 1 | no 6 | e201800164 12 of 12

https://doi.org/10.1038/ncomms7771
https://doi.org/10.1371/journal.pone.0027618
https://doi.org/10.1371/journal.pone.0027618
https://doi.org/10.1016/j.immuni.2004.11.013
https://doi.org/10.1111/j.1749-6632.2003.tb06029.x
https://doi.org/10.1016/j.coi.2005.11.005
https://doi.org/10.1371/journal.pone.0038933
https://doi.org/10.1182/blood-2008-06-161026
https://doi.org/10.1182/blood-2008-06-161026
https://doi.org/10.1182/blood-2012-04-427013
https://doi.org/10.1182/blood-2012-04-427013
https://doi.org/10.1371/journal.pone.0086844
https://doi.org/10.1002/eji.201545945
https://doi.org/10.4049/jimmunol.0900835
https://doi.org/10.1182/blood-2002-06-1855
https://doi.org/10.1182/blood-2002-06-1855
https://doi.org/10.1084/jem.194.4.393
https://doi.org/10.1038/icb.2010.123
https://doi.org/10.4049/jimmunol.172.9.5450
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.26508/lsa.201800164

	Absence of MHC-II expression by lymph node stromal cells results in autoimmunity
	Introduction
	Results
	Expression of MHCII by LNSCs
	Abrogation of endogenous MHCII in LNSCs
	Mice deficient for MHCII expression in LNSCs develop spontaneous signs of T cell–mediated autoimmunity
	MHCII abrogation in LNSCs enhances T-cell activation and impairs the Treg compartment in LNs
	Deletion of MHCII on LNSCs decreases Treg proliferation

	Discussion
	Materials and Methods
	Mice and treatments
	LNSC and cell tissue isolation
	Antibodies, flow cytometry, and cell sorting
	Immunofluorescence microscopy
	Treg suppression assay
	T-cell adoptive transfer into Rag2−/− recipients
	RNA isolation and quantitative RT-PCR
	Lysate preparation and immunoblotting
	Statistical analysis

	Acknowledgements
	Author Contributions
	Conflict of Interest Statement
	Adamopoulou E, Tenzer S, Hillen N, Klug P, Rota IA, Tietz S, Gebhardt M, Stevanovic S, Schild H, Tolosa E,  (2013) Explorin ...


