


phosphomutant surface expression and increased presence of NKA
in intracellular compartments. Therefore, it is possible thatmultiple
members of the NAK family, including GAK and AAK1, could play
complementary roles in receptor recycling via phosphorylating
cargo proteins. Future experiments involving knockdown of GAK,
AAK1, and possibly other NAK family members in neuronal cultures
followed by evaluation of Atp1a3 trafficking would provide further
support for their role in Atp1a3 trafficking.

In conjunction with known functions of NAK family kinases in
membrane trafficking, we propose a simple model whereby GAK
phosphorylates cargo proteins such as Atp1a3 and Sipa1L1 during or
following endocytosis, with this phosphorylation being essential
for efficient progression of Atp1a3 through subsequent trafficking
steps, particularly for recycling back to the plasma membrane (Fig
8A). Previous work implicated PKA and PKC kinases in regulating
NKA recycling in COS-1 cells (Kristensen et al, 2003). Our study
demonstrates that without NAK family kinases or Atp1a3 T705
phosphorylation, NKA trafficking and function are impaired.

Importantly, due to the overlapping nature of substrate speci-
ficity among NAK family kinases, we cannot conclude that the
identified putative substrates (Table 1) are phosphorylated by
GAK and/or other NAK family kinases in organisms. In addition, all
putative phosphorylation sites need to be validated by kinase
assays.

Regulation of sodium potassium pump trafficking by NAK family
kinases

For proper functioning of the sodium potassium pump, the pump
needs to be correctly distributed to the plasma membrane, a
function that is regulated by kinases. NKA phosphorylation by PKA
has been shown to increase cell surface expression of NKA in
mammalian kidney collecting duct cells (Vinciguerra et al, 2003),
while in human skeletal muscle cells, insulin activity recruits NKA to
the surface via phosphorylation by ERK1/2 kinases (Al-Khalili et al,

2004). Here, we show that a novel site at Atp1a3 T705 is phos-
phorylated by GAK, and other NAK family kinases, and is critical for
Atp1a3 localization and pump function. A putative phosphomimetic
mutant, Atp1a3 T705D, demonstrated ER retention, suggesting that
successful NKA exit from the ER is reliant on this site not being
phosphorylated. However, a non-phosphorylatable Atp1a3 T705A
mutant demonstrates that once the pump has left the ER, phos-
phorylation at this site is necessary for the pump to be sorted to the
plasma membrane, as phosphomutant Atp1a3 T705A has reduced
surface expression. Increased total Atp1a3 levels in GAK knockout
mice indicate alterations in NKA function, possibly reflecting NKA
levels increased in response to reduced functionality.

The NKA can be regulated by either a change in intracellular Na+

concentration or a change in Na+ affinity (Toustrup-Jensen et al,
2014). We see an increase in pT705 levels during TTX treatment. TTX
blockade of voltage-gated Na+ channels, while not changing RMP,
would inhibit Na+ influx, resulting in a lower intracellular Na+

concentration. T705 phosphorylation may have a function in reg-
ulation of NKA in response to lower intracellular Na+ concentrations
and reduced firing, perhaps facilitating its intracellular trafficking.

GAK in mouse models

In NexCre-mediated GAK conditional knockout mice, we observed no
overall defects in either RMP or neuronal excitability. This contrasts
with the embryonic or neonatal lethality observed when GAK is
deleted in all neurons (Lee et al, 2008), dopaminergic neurons, or
Drd1a-expressing medium spiny neurons in the striatum. This dif-
ferential effect could be due to a compensatory mechanism present
in pyramidal neurons, such as other NAK family kinases.

GAK and ATP1A3 in neurodegenerative disease and aging

GAK has been identified as a gene associated with Parkinson’s disease
in several genome-wide association studies screens (Pankratz et al,

Table 3. Atp1a3 T705A CRISPR mouse.

Litter Wildtype +/+ Heterozygous ATP1A3T705/+ Homozygous ATP1A3T705/T705

1 2 2 0

2 3 3 0

3 2 3 0

4 1 3 0

5 1 1 0

6 1 2 0

7 2 0 0

8 1 0 0

9 3 3 0

10 5 3 0

11 2 3 0

12 1 1 0

Total born 24 24 0

Percentage of total 50 50 0
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2009; Hamza et al, 2010; Rhodes et al, 2011; Pickrell et al, 2016). In
addition, AAK1 is associated with Parkinson’s disease in a genome-
wide association study (Latourelle, 2009). GAK is shown to interact with
α-synuclein in a pathway involved with PD pathogenesis (Dumitriu
et al, 2011) as well as to form part of a binding complex with another
known PD-risk gene leucine-rich repeat kinase 2 (LRRK2) (Beilina et al,
2014). In a Drosophila model of PD, the GAK ortholog auxilin has been
shown to underlie locomotor defects along with dopaminergic neuron
loss (Song et al, 2017). There is also evidence that a number of PD-
associated genes, including LRRK2 and GAK, disrupt protein trafficking
and degradation via the endosomal pathway as a consequence of age-
related pathophysiology (Perrett et al, 2015).

Following neuronal activity, intracellular sodium clearance is
mainly attributed to the α3-subunit (Azarias et al, 2013). Autosomal
dominant mutations in ATP1A3 have been linked to rapid-onset
dystonia parkinsonism (de Carvalho Aguiar et al, 2004; Bottger et al,
2011), alternating hemiplegia of childhood, and CAPOS syndrome,
with more than 80 different disease-associated mutations re-
ported, many of which target ion binding sites (Clausen et al, 2017).
In addition, studies into neurodegenerative disease mechanisms
have shown ATP1A3 deficits in a number of cases. In Alzheimer’s
disease (AD), there is reduced expression of Atp1a3 but not Atp1a1
in the frontal cortex of AD patients (Chauhan et al, 1997) as well
as impaired NKA activity (Hattori et al, 1998). In AD, amyloid-β
oligomers form unique assemblies called amylospheroids that
target Atp1a3 and impair α3-containing NKA activity, leading to

presynaptic calcium overload and neurodegeneration (Ohnishi
et al, 2015). In PD, α-synuclein assemblies also target Atp1a3 by
sequestering α3-containing NKA into clusters, ultimately affecting
the sodium gradient (Shrivastava et al, 2015). These data support
the possibility that deficiencies in GAK function in phosphorylating
and regulating Atp1a3 may contribute to PD pathogenesis.

Our study uncovers novel roles for GAK in neurons, advancing
our understanding of GAK function in cells. The conserved sub-
strates and phosphorylation sites that we report will enable ex-
ploration of related functions in other tissues. In addition, the
phosphorylation sites can be used to measure GAK activity in
different tissues, during development and in PD disease models.

Materials and Methods

Mouse maintenance

Breeding and experiments were performed under the Animals
(Scientific Procedures) Act 1986 of the United Kingdom and ap-
proved by institutional ethical review. Mice were group-housed and
maintained on a 12-h light/dark cycle, with food and water provided
ad libitum. Each mouse strain was backcrossed into C57 Bl/6
(Jackson) for at least three generations. None of the experimen-
tal mice were immunocompromised. Both male and female mice

Figure 8. GAK function in cargo trafficking.
(A) A simplifiedmodel of GAK function during NKA cargo
transport. (1) AP-1 and clathrin mediate transport from
the Golgi to the plasmamembrane during which Atp1a3
T705 may be phosphorylated by GAK. (2) AP-2 and
clathrin mediate the endocytosis of NKA. During
uncoating, phosphorylation of Atp1a3 T705 may occur.
(3) Under basal conditions, GAK phosphorylates NKA at
Atp1a3 T705, and NKA is recycled to plasma membrane.
(4) Without T705 phosphorylation, NKA is preferentially
localized to EEA1 containing early endosomes.
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were used and randomly allocated to experimental groups. De-
velopmental ages between embryonic day (E)16 and postnatal day
(P)30 were used as indicated in the figure legends.

GAK (B6;129S6-Gaktm2Legr, MMRRC stock JAX: 36793) (Lee et al, 2008),
DatIREScre (B6.SJL-Slc6a3tm1.1(cre)Bkmn/J, IMSR Cat. No. JAX:006660, RRID:
IMSR_JAX:006660) (Backman et al, 2006), and Thy1-YFP ((Thy1-YFP)HJrs,
IMSR Cat. No. JAX:003782, RRID:IMSR_JAX:003782) (Feng et al, 2000)
were obtained from Jackson Laboratories. NexCre (Neurod6tm1(cre)Kan,
MGI Cat. No. 4429523, RRID:MGI:4429523) was obtained from Marcus
Schwab (Schwab et al, 2000) and Drd1aCre (Tg(Drd1a-cre)EY262Gsat,
MGI:3836631) was obtained from MMMRC UC Davis (Gong et al, 2007).

Atp1a3 T705A was created in house using the CRISPR system.
For experiments, NexCre homozygous GAK heterozygous males

(NexCre/Cre;GAKflox/+) were bred with GAK homozygous (GAKflox/flox)
females to generate experimental controls NexCre/+;GAKflox/+ (F/+)
or mutants NexCre/+ GAKflox/flox (F/F). All mice were bred and
genotyped as recommended by Jackson Laboratories.

Isolation of primary cells

For rat primary cultures, E18 embryos of either sex from
Sprague–Dawley rats (Charles River Labs) were used. After removal
of the meninges, cortices and hippocampi were dissected, sepa-
rately pooled, and mechanically triturated. Dissociated neurons
were then plated in plating medium containing 10% foetal bovine
serum (Hyclone), 0.45% dextrose, 0.11 mg/ml sodium pyruvate, 2 mM
glutamine, 100 units/ml penicillin, and 100 mg/ml streptomycin in
modified Eagle’s medium. Hippocampal neurons were seeded onto
18-mm glass coverslips coated with 0.06 mg/ml poly-D-lysine
(Sigma-Aldrich) and 0.0025 mg/ml laminin (Sigma-Aldrich) at a
density of approximately 0.15 × 106 cells per coverslip. Cortical
neurons were seeded onto either 6-well or 12-well plates coated
with poly-D-lysine/laminin at a density of 0.3 × 106 cells per well.
After 4 hours, plating medium was replaced with maintenance
media containing 1× B27 (Invitrogen), 100 units/ml penicillin and
100mg/ml streptomycin, 2 mM glutamine and 12.5 μM glutamate in
Neurobasal Media (Invitrogen). Half of the media was replaced
with fresh about every four days to maintain cultures until use.
Plasmid transfections in cultured neurons were performed with
Lipofectamine-2000 (Invitrogen) according to manufacturer’s in-
structions. For 12-well plates, 1 μg total plasmid DNA was trans-
fected per well. For six-well plates, 3 μg of total plasmid DNA was
transfected.

Tissue culture cells

HEK 293T cells and COS7 cells were maintained in DMEM (Gibco)
supplemented with 10% FBS and 1% penicillin–streptomycin.
Transfections were performed using Xtremegene 9 (Roche)
according to manufacturer’s instructions. Cells were collected for
Western blot analysis 48 h post- transfection.

Plasmids and cloning

GAKmouse (Open Biosystems) FL and kinase domain–only (K) cDNA
were cloned into a pRK5 mammalian expression vector containing

an N-terminal hemagglutinin (HA) tag (HA-pRK5) by PCR cloning
using 59 SalI and 39 NotI restriction sites and the following oligos:

GAK SalI Fwd: CATCGTGTCGACTATGTCGCTGCTGCAGTCTGC
GAK NotI Rev: TCGAGTGCGGCCGCTCAGAAGAGGGGCCTCGAGC
GAK1–400 NotI Rev: ACAGTTGCGGCCGCCTAGTTAGCCACAGACTGGATGA

All GAK mutants were generated by site-directed mutagenesis
using QuickChange (Agilent Technologies) and the following oligos:

GAK K69R (KD) Fwd: GGCAGAGAGTATGCATTAAGGCGATTACTATCC
GAK K69R (KD) Rev: GGATAGTAATCGCCTTAATGCATACTCTCTGCC
GAK T123A (AS) Fwd: GAGTTCCTCCTGCTTGCGGAGCTTTGTAAAGG
GAK T123A (AS) Rev: CCTTTACAAAGCTCCGCAAGCAGGAGGAACTC
GAK L121I/T123A (AS rescue) Fwd: GGGCAGGCTGAGTTCCTCATTCTTGC
GGAGCTTTG
GAK L121I/T123A (AS rescue) Rev: CAAAGCTCCGCAAGAATGAGGAACTC
AGCCTGCCC
GAK C87Q/F88I/L89M (AS rescue) Fwd: CAGGAAGTTCAGATCATGAAAA
AACTTTCTGGCCAC
GAK C87Q/F88I/L89M (AS rescue) Rev: GTGGCCAGAAAGTTTTTTCATG
ATCTGAACTTCCTG

Atp1a3 mouse cDNA (Source Bioscience) and Sipa1L1 mouse
cDNA (Source Bioscience) were cloned into HA-pRK5 by PCR cloning
using 59 SalI and 39 NotI restriction sites (already present in Atp1a3)
and the following oligos for Sipa1L1:

Sipa1L1 SalI Fwd: GGTGGTGGTGGTGGGTCGACCATGACCAGTTTGAAGCG
GTCG
Sipa1L1 NotI Rev: TGCTGCTGCTGCGGCCGCCTAGCTCATGTCTATGG
Sipa1L1 Act1 NotI Rev: TGCTGCTGCTGCGGCCGCTCACTCCTCCTCCGTGC
TCTG

All phosphomutants of Atp1a3 and Sipa1L1 were generated by
site-directed mutagenesis using QuickChange and the following
oligos:

Atp1a3 T705A Fwd: GCAATTGTGGCTGTGGCTGGCGATGGTGTGAATGAC
Atp1a3 T705A Rev: GTCATTCACACCATCGCCAGCCACAGCCACAATTGC
Atp1a3 T705D Fwd: GCAATTGTGGCTGTGGATGGCGATGGTGTGAATGAC
Atp1a3 T705D Rev: GTCATTCACACCATCGCCATCCACAGCCACAATTGC
Atp1a3 Q108R (ouabain resistance) Fwd: CTGGCCTATGGCATCCGGGC
AGGGACGGAGGATGAC
Atp1a3 Q108R (ouabain resistance) Rev: GTCATCCTCCGTCCCTGCCCG
GATGCCATAGGCCAG
Atp1a3 N119D (ouabain resistance) Fwd: GATGACCCTTCCGGTGACGAC
CTGTACCTGGGCATAGTG
Atp1a3 N119D (ouabain resistance) Rev: CACTATGCCCAGGTACAGGTC
GTCACCGGAAGGGTCATC
Sipa1L1 T249A Fwd: CTCAGTGACTTCCTCATCGCTGGTGGGGGCAAGGGTT
CTGG
Sipa1L1 T249A Rev: CCAGAACCCTTGCCCCCACCAGCGATGAGGAAGTCACT
GAG

The mCh-ER3 (plasmid #55041; Addgene) and mCh-Golgi7
(plasmid #55052; Addgene) plasmids were gifts from Michael
Davidson. The mCh-Rab5 (plasmid #49201; Addgene) and mCh-Rab7A
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(plasmid #61804; Addgene) plasmids were gifts from Gia Voeltz
(Friedman et al, 2010; Rowland et al, 2014). Lamp1-RFP (plasmid
#1817; Addgene) was a gift from Walther Mothes (Sherer et al,
2003). The pEYFP-Na,K-ATPase-β1 (rat) and -β2 (human) subunit
plasmids were a kind gift from Dr. Olga Vagin (UCLA). The mCh-
Transferrin plasmid was a kind gift from Dr. Michael Ehlers (Duke
University).

Immunostaining

Cultured hippocampal neurons on glass coverslips were fixed for
10 min at RT with 4% paraformaldehyde/sucrose in PBS, per-
meabilized for 10 min RT with 0.1% Triton-X100 in PBS, and then
blocked for 1 h RT with 10% normal goat serum in PBS. Cultures were
incubated with primary antibodies in blocking buffer at 4°C
overnight. After three washes in PBS, cultures were labelled with
fluorescent secondary antibodies (1:500) for 1 h RT and washed
three times with PBS and the coverslips mounted onto slides using
Fluoromount-G (Southern Biotech). Antibodies used for immuno-
cytochemistry are rat anti-HA (1:500; Roche), mouse anti-EEA1
(clone 14 1: 250; BD Transduction Laboratories), rabbit anti-LAMP1
(ab24170, 1:500; Abcam), and mouse anti-c-Myc (1:500; Thermo
Fisher Scientific). Fluorescent secondary antibodies with minimal
cross-reactivity to other species were obtained from Invitrogen or
Jackson ImmunoResearch.

Western blotting

For drug treatment experiments, DIV14-15 cultured cortical neurons
in a 12-well plate were used. Each well was treated for 1 h in culture
medium. Neurons were directly lysed with 1× sample buffer (4×
stock; Invitrogen) containing 400 mM DTT. Lysates were denatured
for 10 min at 95°C.

For CIP dephosphorylation experiments, DIV15 rat cortical cul-
tures in 60-mm dishes were treated for 1 H with either DMSO, 0.5 μM
OA, or 10 μM cyclosporin A and lysed in lysis buffer (20 mM Tris, pH
8.0, 150 mM NaCl, 1% NP40 [Igepal], 10% glycerol, 1× protease in-
hibitor cocktail [Roche]). Lysates were left to solubilize on ice for
10 min and then clarified by centrifugation for 10 min at 20,000 g.
For controls, 10 μl of supernatant was removed and incubated with
35 μl H2O and 5 μl 10× CutSmart buffer (NEB) for 1 H at 37°C. For CIP-
treated samples, 10 μl of supernatant was incubated with 35 μl H2O,
5 μl 10× CutSmart buffer, and 2 μl (20 units) of calf intestinal alkaline
phosphatase (NEB) for 1 H at 37°C. To stop the reaction, 16 μl of 4×
sample buffer was added and samples were denatured for 10min at
95°C.

For rat embryonic and adult whole-brain lysates, tissues were
solubilized in either 200 μl or 2 ml of 1× sample buffer, respectively,
and sonicated. Lysates were then clarified by centrifugation for
10 min at 20,000 g. The resulting supernatant was further diluted in
1× sample buffer 1:16 or 1:12 for embryonic or adult lysates, re-
spectively, and 5 μl was loaded.

For immunoprecipitation (IP) experiments in HEK 293T cells, cells
were lysed in IP buffer (20 mM Tris, pH 8.0, 150 mM NaCl, 1% NP40
[Igepal], 10% glycerol, 1× protease inhibitor cocktail [Roche] and
1× phosphatase inhibitor cocktail 3 [Sigma-Aldrich]). Lysates were

solubilized for 30 min at 4°C and then clarified by centrifugation for
10 min at 20,000 g. An aliquot of input was reserved as needed, and
the remaining supernatant was incubated with 30–40 μl of HA
beads (clone 3F10; Roche) for 2 h rotating at 4°C. The beads were
washed three times in IP buffer before proteins were eluted in 2×
sample buffer and denatured for 10 min at 95°C.

Protein samples were subjected to SDS–PAGE separation on
4–12% gradient gels according to manufacturer’s protocol (Invi-
trogen). Resolved proteins were transferred to polyvinylidene
fluoride membrane, blocked in either 5% non-fat dry milk (Sigma-
Aldrich) or 5% BSA (Sigma-Aldrich) for 1 h RT, and incubated
overnight at 4°C with primary antibodies. Signal was detected using
horseradish peroxidase (HRP)–conjugated secondary antibodies
(Jackson) followed by a chemiluminescence reaction using Amer-
sham ECL substrate (GE Healthcare). Chemiluminescent signal was
detected using X-ray film (GE Healthcare). Densitometry was done
using ImageJ, and values were analysed using t test.

Antibodies used in immunoblots include rat anti-HA (3F10 1:
5,000; Roche), mouse anti-α tubulin (1:20,000; Molecular Probes),
and mouse anti-Atp1a3 (1:30,000; Thermo Fisher Scientific). GAK
rabbit antibody was a gift from Lois Greene used at 1:10,000.
Phosphoantibodies were generated by Covalab. Atp1a3 phospho-
T705 antibody was generated against the mouse Atp1a3 epitope
TQRAGHRRIL-phospho-S-DV (1:500 for Western blot). Horseradish
peroxidase–conjugated secondary antibodies against mice, rats,
and rabbits were used between 1:10,000 and 1:25,000 (Jackson
ImmunoResearch).

Surface biotinylation

Cells were washed 2× with cold PBS and then incubated in 1× PBS
containing 1 mg/ml sulpho-NHS biotin conjugate (Pierce) for 30min
rocking at 4°C. Cells were washed 2× to remove unbound biotin,
then lysed in NP40 lysis buffer (20 mM Tris, pH 8.0, 150 mM NaCl, 1%
NP40 [Igepal], 10% glycerol, 1× protease inhibitor cocktail [Roche],
and 1× phosphatase inhibitor cocktail 3 [Sigma-Aldrich]), and
centrifuged at 20,000 g for 10 min. After reserving an aliquot for
input, the remaining supernatant was incubated with 30 μl of
streptavidin beads (Pierce) for 1 h rotating at 4°C. The beads were
washed 3× in lysis buffer, and surface proteins were eluted in 2×
sample buffer for 10 min at 95°C.

Protein purification

GAK K constructs for protein purification, analog-specific (AS) and
KD, were cloned into the pFastBac HT B vector (Invitrogen) by PCR
cloning to contain N-terminal 6× His tag. His-tagged GAK-K-AS and
GAK-K-KD baculovirus expression (Bac-to-Bac Baculovirus ex-
pression system; Invitrogen) was performed according to manu-
facturer’s protocol in insect cells.

Kinase assays

GAK assays: GAK was expressed in HEK 293T cells for 48 h main-
tained in 10% FBS, 5% pen/strep in Dulbecco’s modified Eagle
medium. Cells were lysed with lysis buffer containing 1% Nonidet
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P-40 (Igepal), 10% glycerol, 1 mM Na3VO4, 20 mM β-glycerol phos-
phate, 50 mM NaF, 1× complete protease inhibitor cocktail (Roche),
1× phosphatase inhibitor cocktail 3 (Sigma-Aldrich) in 20 mM
Tris–HCl pH 8.0 and 150 mM NaCl. Lysates were incubated on ice for
30 min and centrifuged at 20,000 g for 15 min. Supernatant was
precleared with IgG-Sepharose (GE Healthcare) for 30 min and
incubated with Anti-HA Affinity matrix (clone 3F10; Roche) for 2 h at
4°C to immunoprecipitate HA-tagged GAK. Beads were washed
twice with lysis buffer, once with lysis buffer containing 1 M NaCl for
10 min and once with lysis buffer for 10 min. After three additional
washes with kinase reaction buffer (20 mM Tris–HCl pH 7.5, 10 mM
MgCl2, 1 mM DTT, 1 μM cyclic AMP–dependent protein kinase in-
hibitor peptide and 1 μM OA), beads were incubated in a kinase
reaction mixture for 30 min at 30°C. Reaction volume was 30 μl in
addition to the bead volume. Either 0.5 mM ATP-γ-S (Sigma-Aldrich)
or 0.5 mM of the analog ATP-γ-S (6-Bn-ATP-γ-S, 6-PhEt-ATP-γ-S or
6-Furfuryl-ATP-γ-S from BioLog Life Science Institute) was included
in the reaction. The reaction was immediately followed by a 1 h
alkylation reaction at RT by adding 1.5 μl of 100mM p-nitro mesylate
(PNBM) per 30 μl of kinase reaction. The reaction was stopped by
the addition of 4× sample buffer containing 400 mM DTT to a final
concentration of 1×, and proteins on the beads were denatured at
95°C for 10 min. Supernatants were run on a Western blot. Thio-
phosphorylation was detected by anti-thiophosphate ester anti-
body 1:30,000 (Abcam).

Chemical genetics for kinase substrate identification

Substrate labelling
Mice were euthanized with cervical dislocation. Brains were washed
in cold PBS and immediately transferred to ice cold lysis buffer
(10 mM MgCl2, 100 mM NaCl, 20 mM Tris pH 7.5, 0.5 mM DTT, 1×
protease inhibitor cocktail [Roche], and 0.25% Nonidet P-40). Brains
were minced and lysed by sonication, and lysates were centrifuged
at 20,000 g for 15 min. The protein concentration of the superna-
tant was measured by BCA assay (Pierce) and diluted to 10–20 μg/μl
in the same lysis buffer. To 100 μl of supernatant, ~10 μg of puri-
fied GAK (either His tag purified from SF21 cells or freshly immu-
noprecipitated from HEK 293T cells on HA beads [30 μl resin
volume]), 10 μM protein kinase C inhibitor (Bisindolylmaleimide
I–Calbiochem), 1 μM cyclic AMP–dependent protein kinase inhibitor
peptide, 3 mM GTP, 100 μM ATP, and 0.5 mM Furfuryl-ATP-γ-S were
added for labelling reaction. PKC inhibitor and GTP were used to
reduce background. Substrates were labelled for 1–2 h at 30°C on a
nutator.

Covalent capture
Covalent capture of thiophosphorylated substrate proteins was
performed as described (Hertz et al, 2010) except for the following
modifications. The labelled brain lysates were denatured by adding
60% by volume solid urea, 1 M TCEP to 10 mM and incubating at 55°C
for 1 h. Proteins were then digested by diluting the urea to 2 M by
addition of 100 mM NH4HCO3 (pH 8), adding additional TCEP to
10 mM final, 0.5 M EDTA to 1 mM, and trypsin (Promega) 1:20 by
weight. The labelled lysates were digested for 16 h at 37°C, acidified
to 0.5% TFA, and desalted using a sep pak C18 column (Waters)

eluting into 1 ml 50% acetonitrile 0.1% TFA. The desalted peptides
were dried using a speed vacuum to 40 μl. The pH of the peptides
was adjusted by adding 40 μl of 200 mM Hepes pH 7.0 and 75 μl
acetonitrile and brought to pH 7.0 by addition of 10% NaOH. The
peptide solution was then added to 100 μl iodoacetyl beads (Pierce)
equilibrated with 200 mM Hepes pH 7.0 and incubated with end-
over-end rotation at RT in the dark for 16 h. The beads were then
added to small disposable columns, washed with H2O, 5 M NaCl,
50% acetonitrile, 5% formic acid, and 10mMDTT, followed by elution
with 100 μl and 200 μl (300 μl total) 1 mg/ml oxone (Sigma-Aldrich),
desalted, and concentrated on a 10-μl zip tip (Millipore) eluting into
60 μl total volume. The resulting phosphopeptide mixtures were
resuspended in 35 μl 0.1% trifluoroacetic acid and injected three
times (10 μl per injection), with each run a 1-h gradient elution
with one activation method per run (collision-induced dissoci-
ation, multistage activation, and higher energy collisional activation
dissociation). A LTQ-Orbitrap Velos was used for data acquisition.
Data processing was performed using MaxQuant bioinformatics
suite.

Measurement of Atp1a3 distribution in COS7 cells using ADAPT
ImageJ software plugin

COS7 cells were split at confluency and GFP-tagged β1 was co-
transfected with either HA-tagged Atp1a3 WT or T705A. After 48 h,
cells were treated with either DMSO or 2 μM LP for 1.5 h. Cell media
was then replaced for 30 mins with a serum-free media including
either DMSO or LP. This was followed by the addition of 5 μM 12i or
DMSO into wells for another 2 h. DMSO control, 12i, LP or 12i+LP
conditions all received the same total volumes of DMSO solvent. LP
treatment was done for 4 h total and 12i treatment for 2 h total
(in serum-free conditions). Cells were fixed with 4% PFA/sucrose for
10 min at RT and stained using anti-HA antibody. β1 expression was
visually confirmed in all imaged cells.

In vivo tissue processing

NexCre/+;Gakflox/flox;Thy1-YFP and NexCre/+;Gakflox/+;Thy1-YFP mice
(P18-P20) were anaesthetized by intraperitoneal injection of 70–100
mg/kg ketamine + 10–20 mg/kg xylazine and perfused with ice cold
PBS followed by 4% PFA. Brains were post-fixed in 4% PFA overnight
at 4°C. Using vibratome sectioning, 50–100-μm-thick coronal sec-
tions were collected. Sections were mounted to glass slides using
Fluoromount-G and imaged.

Electrophysiology

NexCre/+;Gakflox/flox and NexCre/+;Gakflox/+ mice (P18-P22) were
anaesthetized by intraperitoneal injection of ketamine (80 mg/kg)
and xylazine (10 mg/kg). Mice were killed by cervical dislocation.
Brains were removed, the midline was cut down, and the cut surface
was glued to the stage of the slicing chamber containing ice cold
(~1°C) sucrose artificial cerebral spinal fluid (aCSF; composition in
mM: 189 sucrose, 26 NaHCO3, 2.5 KCl, 5 MgCl2, 0.1 CaCl2, 1.2 NaH2PO4, 10
glucose), gassed with 95% O2–5% CO2. Sagittal slices (300 μm thick)
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were prepared and transferred into an interface storage chamber
containing aCSF (composition in mM: 125 NaCl, 3 KCl, 1 MgCl2, 2 CaCl2,
1.2 NaH2PO4, 26 NaHCO3, 10 glucose) bubbled with 95% O2–5% CO2 at
RT. Slices were left in the interface storage chamber for at least 1 h
before use and were used up to 8 h after slicing.

Whole-cell patch clamp recordings weremade from the somata of
hippocampal CA1 pyramidal neurons using infrared differential in-
terference contrast optics. Slices were constantly perfused with 95%
O2–5% CO2 oxygenated aCSF at a flow rate of ~ 3 ml⋅min−1 at 31–32°C.
Patch electrodes (3–7 MΩ) were pulled from borosilicate glass.
Membrane currents were recorded using aMulticlamp 700B amplifier
(Molecular Devices), sampledat 5 kHz, and lowpass Bessel–filtered at
1 kHz. Compensations for slow and fast capacitive currents were
performed. Data acquisition was controlled using Clampex 10.3.

Miniature excitatory postsynaptic currents were recorded at −75 mV
using an intracellular solution comprising the following (mM): 140
CsCH3SO4, 8 NaCl, 10 Hepes, 0.5 EGTA, 2 Mg-ATP, 0.3 Na-GTP, 5 QX-314,
and 0.2% biocytin; osmolarity ~285 mosmol⋅l−1; pH 7.3 with CsOH.
Miniature EPSCs were isolated with 10 μM gabazine and 1 μM tetro-
dotoxin (Tocris Chemicals). For firing studies, the intracellular solution
comprised (mM) 120 K+-gluconate, 24 KCl, 4 NaCl, 4 MgCl2, 0.16 EGTA, 10
Hepes, 4 K2-ATP, and 0.2% biocytin, pH 7.2 adjusted with KOH.

Electrophysiological data analysis

Cells were rejected if input/access resistance or holding current
changed by more than 20% of the initial value after establishing the
whole-cell configuration. For miniature excitatory postsynaptic cur-
rents, 5 min of data was analysed from each viable cell, and post-
synaptic currents were manually detected using MiniAnalysis software
(v6.0.3, Synaptosoft). The amplitude and area detection threshold was
set to five times greater than the root mean square of the baseline
noise. For firing studies, data were analysed with pClamp10 software
(Molecular Devices). Statistical analysis was performed using Origin
2017 software (OriginLab). Data were tested for normality using a
Shapiro–Wilk test; significant criterion was α = 0.05. Mann–Whitney U
test was used on non-normally distributed data.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201800118.
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